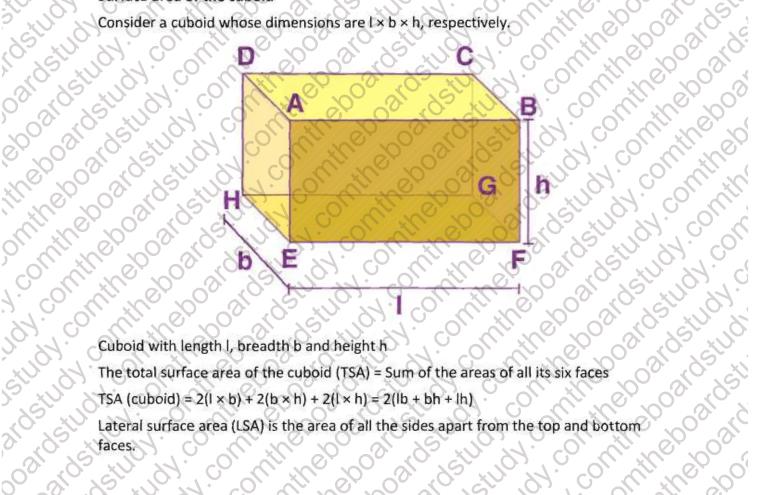


Surface Areas and Volumes

- Surface area of a solid is the sum of the areas of all its faces.
- 2. The space occupied by a solid object is the volume of that object.
- 3. If I, b, h denote respectively the length, breadth and height of a cuboid, then: Lateral surface area or Area of four walls = 2(e + b) h

Total surface area = $2(\ell b + bh + h\ell)$ Volume = $\ell \times b \times h$

Diagonal of a cuboid =


Surface Area and Volume of Cuboid

A cuboid is the region covered by its six rectangular faces. The surface area of a cuboid is equal to the sum of the areas of its six rectangular faces. is equal to the sum of the areas of its six rectangular faces.

Surface area of the cuboid

, eboardstudy.cc

Consider a cuboid whose dimensions are I × b × h, respectively

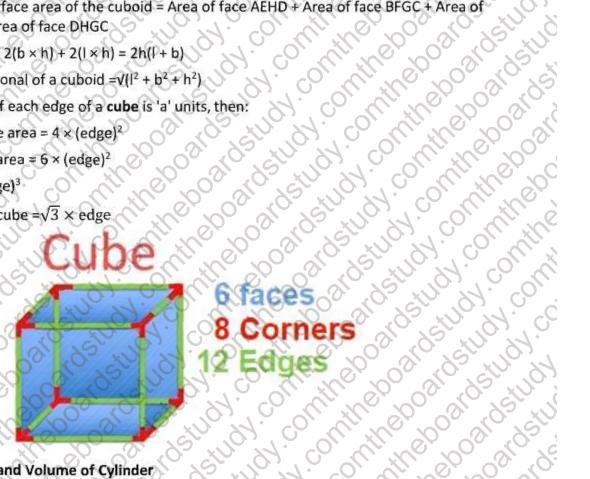
Cuboid with length I, breadth b and height h

Lateral surface area (LSA) is the area of all the sides apart from the top and bottom faces. i.ku contineboardet counthepos ardeilldy.c mineboard ACHINAY.COM wahoardst mardstud faces. . Heillow. C Sardstud

The lateral surface area of the cuboid = Area of face AEHD + Area of face BFGC + Area of boardeing A countille by , eboardstudy.comitr face ABFE + Area of face DHGC

LSA (cuboid) $= 2(b \times h) + 2(l \times h) = 2h(l + b)$

Length of diagonal of a cuboid = $\sqrt{(l^2 + b^2 + h^2)}$

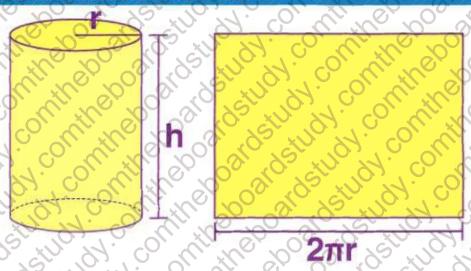

4. If the length of each edge of a cube is 'a' units, then:

Lateral surface area = $4 \times (edge)^2$

Total surface area = $6 \times (edge)^2$

Volume = $(edge)^3$

Diagonal of a cube = $\sqrt{3}$ × edge



Surface Area and Volume of Cylinder

A cylinder is a solid shape that has two circular bases, connected with each other through a lateral surface. Thus, there are three faces, two circular and one lateral, of a cylinder. Based on these dimensions, we can find the surface area and volume of a cylinder.

Surface Area of Cylinder

Englishing Study Counting to Study Study Conf. Take a cylinder of base radius r and height h units. The curved surface of this cylinder, if Journal Stridy. Contine to a string of the contine The continuous destudy. Continuous destudy. opened along the diameter (d = 2r) of the circular base can be transformed into a on the boards tildy contine boards. white of the post III. Heldo aidstudy. On the boardst. J. Actildy. Coming of the pool rectangle of length 2πr and height h units. Thus, and stilly contine to a definity. 3hoardstudy contine boardstud AL SELECTION OF SE Leboards flidy contine boards f

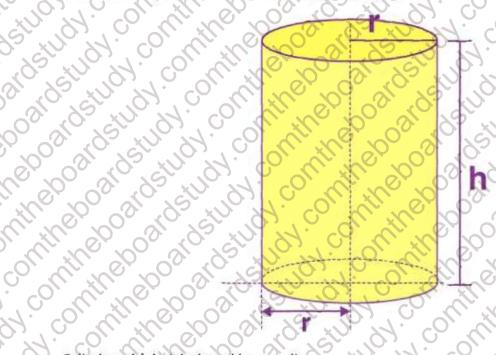
Transformation of a Cylinder into a rectangle.

CSA of a cylinder of base radius r and height $h = 2\pi \times r \times h$

TSA of a cylinder of base radius r and height $h = 2\pi \times r \times h + area$ of two circular bases

 $=2\pi \times r \times h + 2\pi r^2$

 $=2\pi r (h + r)$


-Ardstud

ahnardst

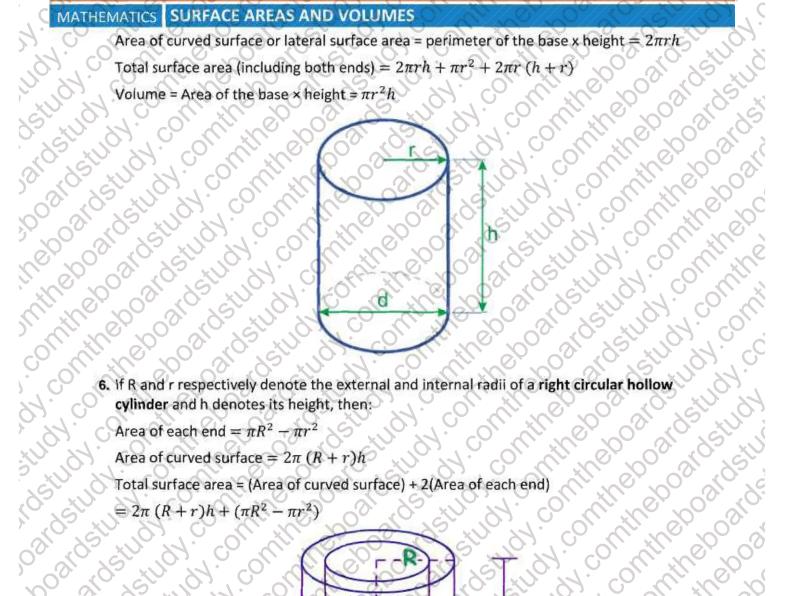
. Heillow C

Volume of a Cylinder

Volume of a cylinder = Base area × height = (πr^2) × h = πr^2 h

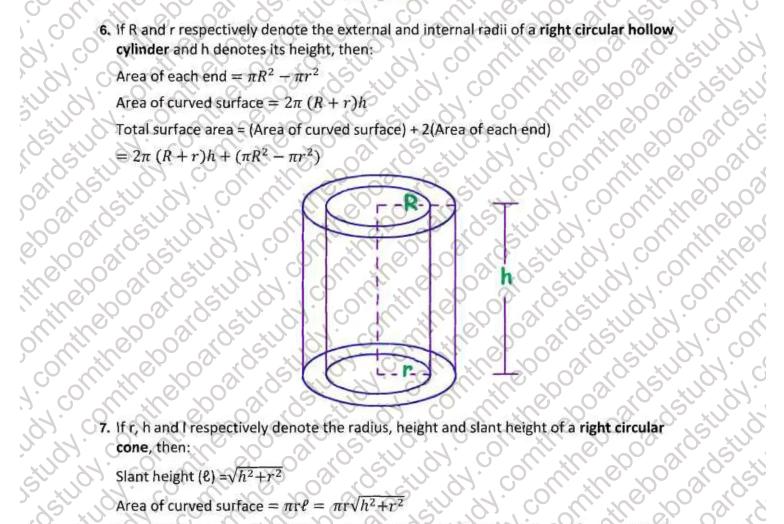
HIIM COM

Cylinder with height h and base radius r

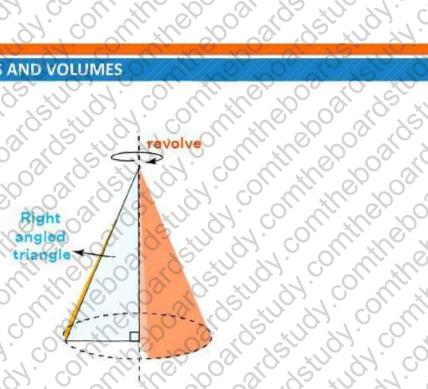

5. If r and h respectively denote the radius of the base and the height of a right circular cylinder, then: Area of each end or Base area $= \pi r^2$, it contheboards it maidstudy. ard study con Jethidy comit hahoaidstud c.o.mitheboo Mikeposig

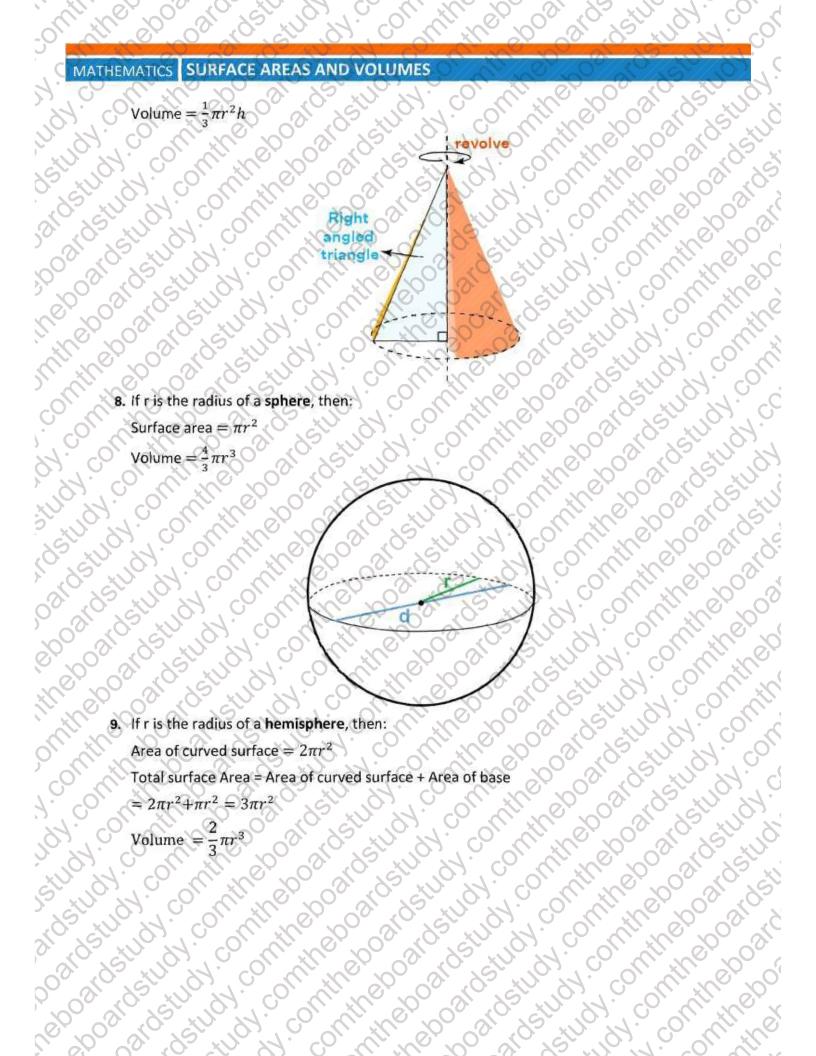
SURFACE AREAS AND VOLUMES **MATHEMATICS**

Area of curved surface or lateral surface area = perimeter of the base x height = $2\pi rh$

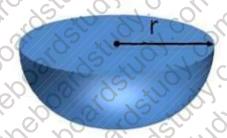

Total surface area (including both ends) = $2\pi rh + \pi r^2 + 2\pi r (h + r)$

Volume = Area of the base × height = $\pi r^2 h$


oardstudy.comineboard Etildy. on the boards that co

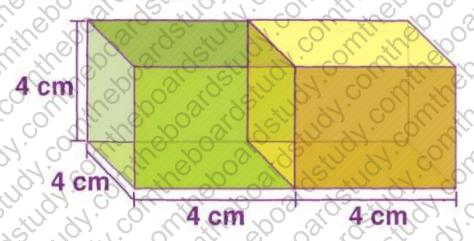

Area of each end =
$$\pi R^2 - \pi r^2$$

Area of curved surface = 2π (R)
Total surface area = (Area of curve)
= 2π ($R + r$) $h + (\pi R^2 - \pi r^2)$


A COMINE DO AID STATE OF THE ST ht. Y. coulting to and study col $-r_{\rm E} {\rm nt} \ {\rm and \ slant \ height \ of \ a \ right \ circular}$ area of curved surface $=\pi r\ell=\pi r\sqrt{h^2+r^2}$ Total surface area = Area of curved surface + Area of base $=\pi r\ell+\pi r^2=\pi r(\ell+r)$

Volume =
$$\frac{1}{3}\pi r^2 h$$

$$=2\pi r^2+\pi r^2=3\pi r^2$$


Surface Area of Combined Figures

Areas of complex figures can be broken down and analysed as simpler known shapes. By finding the areas of these known shapes, we can find out the required area of the unknown figure.

Example: 2 cubes each of volume 64 cm³ are joined end to end. Find the surface area of the resulting cuboid.

Length of each cube = $64^{(1/3)}$ = 4cm

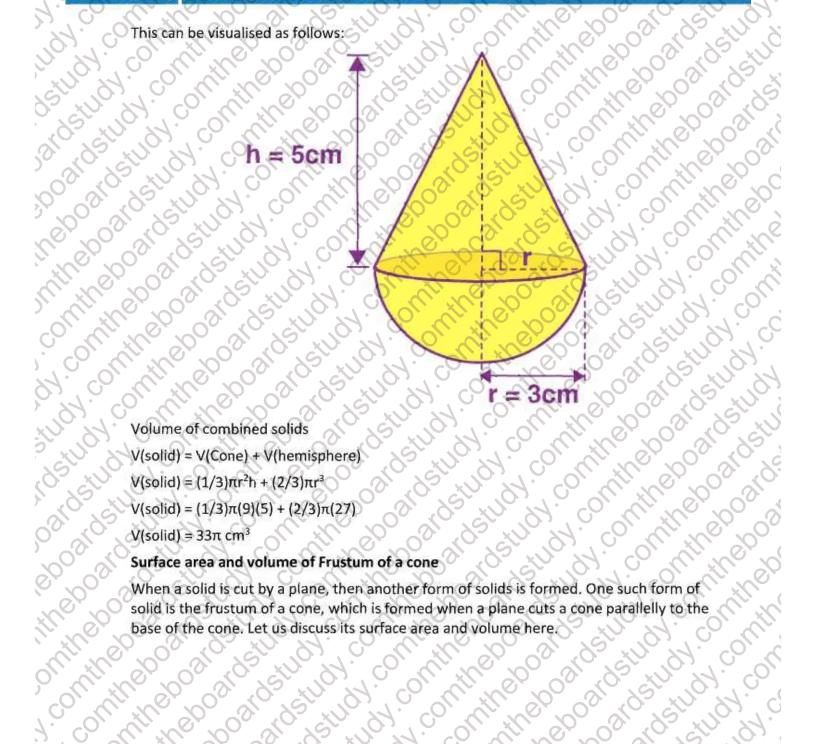
Since these cubes are joined adjacently, they form a cuboid whose length I = 8 cm. But height and breadth will remain the same = 4 cm.

Combination of 2 equal cubes

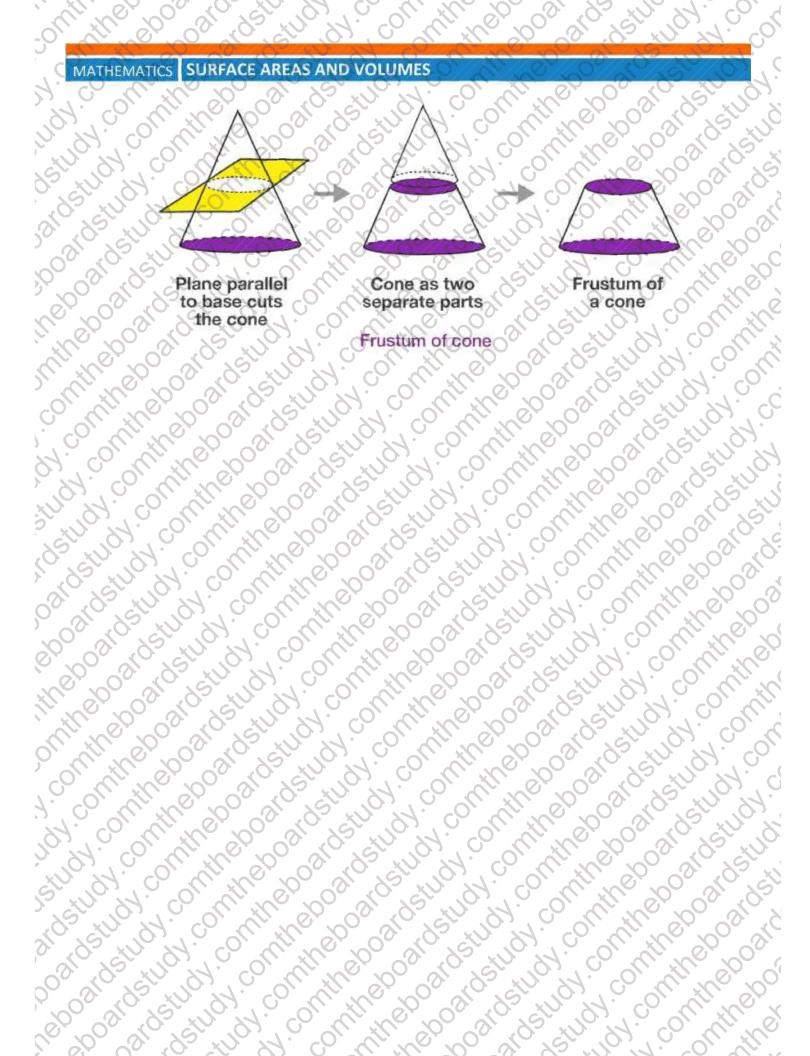
.. The new surface area, TSA = 2(lb + bh + lh

$$TSA = 2(8 \times 4 + 4 \times 4 + 8 \times 4)$$

$$= 2(32 + 16 + 32)$$

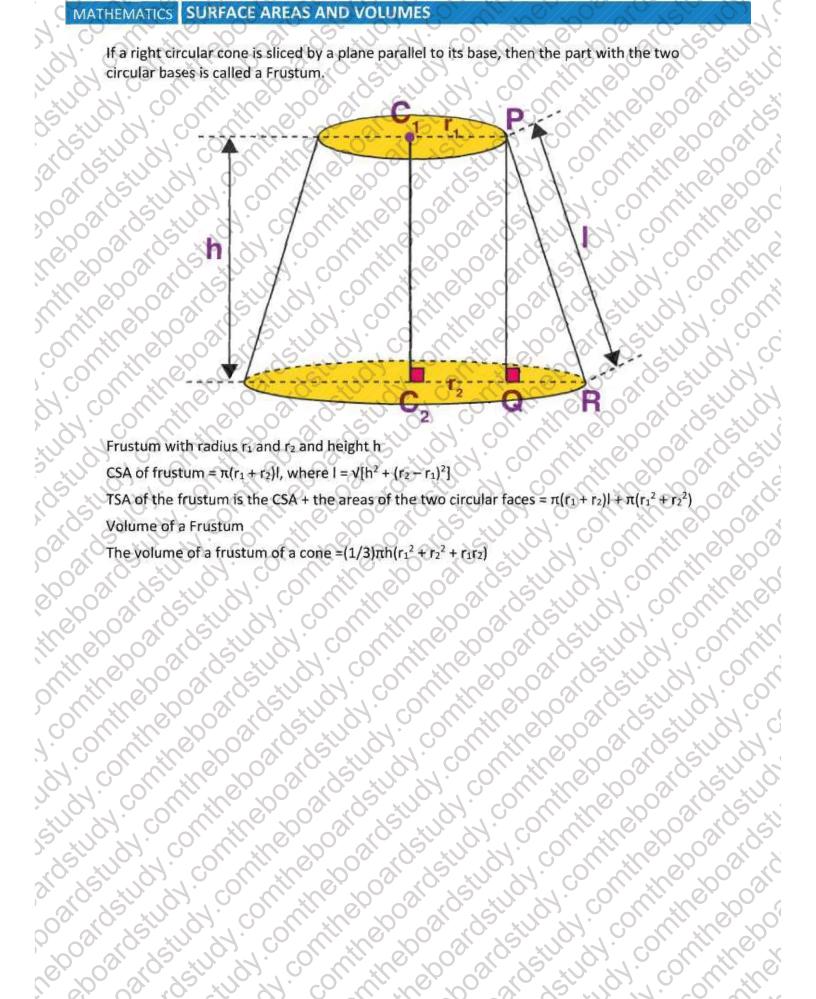

$$= 2 (80)$$

The volume of complex objects can be simplified by visualising them as a combination of shapes of known solids.

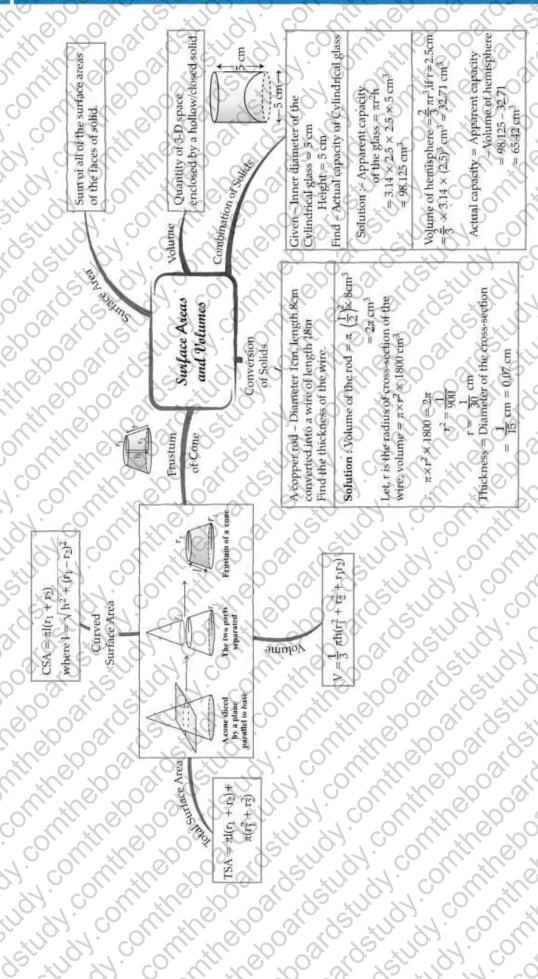

Example: A solid is in the shape of a cone standing on a horizontal being equal to 3 cm and the height of the in contine boat "I'M COLUL

mards

This can be visualised as follows:

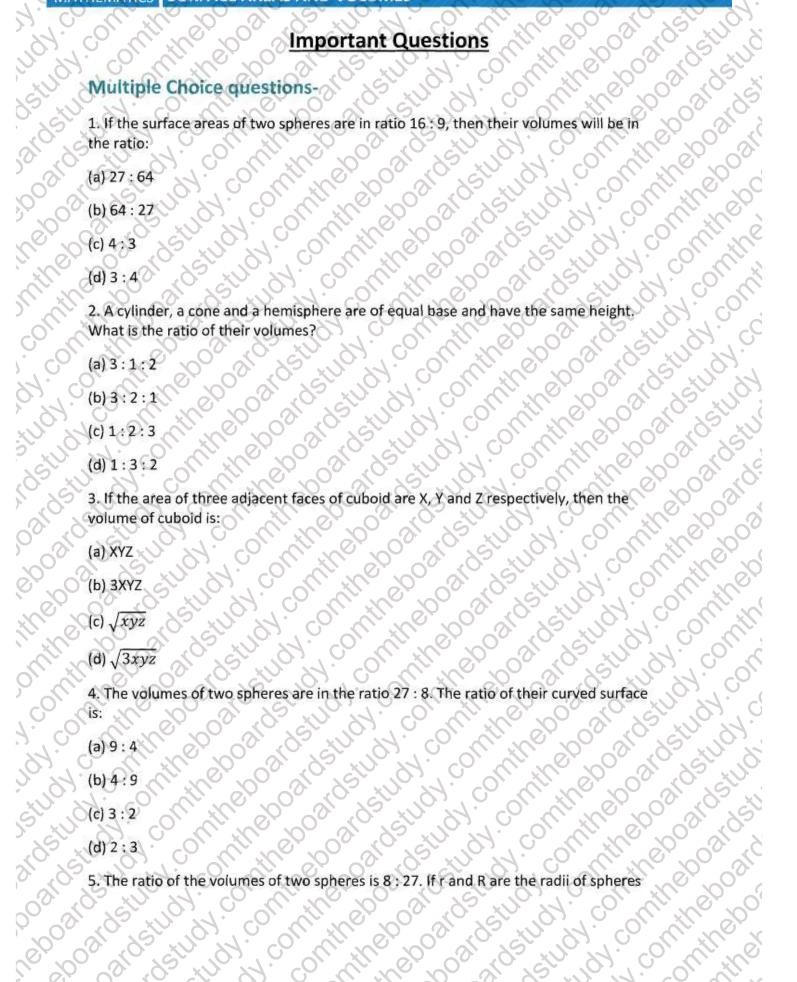


When a solid is cut by a plane, then another form of solids is formed. One such form of solid is the frustum of a cone, which is formed when a plane cuts a cone parallelly to the base of the cone. Let us discuss its surface area and volume be TITIE DO ATOSTUCIA, CONTINE DO ATOSTUCIA, CO Julius of the post the standards find where John Ardellow, Contine to Contine on notified of the boards the boa Jakindy Contheboardstudy. Contheboardstudy. USO SIGNING COUNTY COUN oo and study. Continue to and study. ardstudy.comineboards



Dandstudy Contine to and study Contine to and study Contine to a destudy Contine to a destudy

If a right circular cone is sliced by a plane parallel to its base, then the part with the two circular bases is called a Frustum. circular bases is called a Frustum.



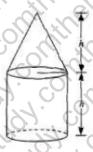
O

THEY

Important Questions

respectively, then (R - r): r is: (a) 1: 2 (b) 1; 3 (c) 2: 3 (d) 4: 9 6. The radii of two cylinders are in the ratio 2: 3 and their heights are in the ratio 5: 3. The ratio of their volumes is: (a) 27: 20 (b) 20: 27 (c) 9: 4 (d) 4: 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2: 3 (b) 3: 4 (c) 1: 4 (d) 4: 1 8. If the volumes of a cube is 1728 cm³, the length of its edge is equal to: (a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: . (a) 9.7 (b) 72.6	: 2 : 3 : 3 : 9 the radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. ratio of their volumes is: 7 : 20 : 0 : 27 : 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4 : 1 the volumes of a cube is 1728 cm³, the length of its edge is equal to: cm 2 cm 8 cm	THEMATICS	SURFACE AREAS AND VOLUMES
 (b) 1:3 (c) 2:3 (d) 4:9 6. The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is: (a) 27:20 (b) 20:27 (c) 9:4 (d) 4:9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4 	: 3 : 3 : 9 ne radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. ratio of their volumes is: 7 : 20 : 0 : 27 : 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	respectively	r, then (R – r): r is:
 (b) 1:3 (c) 2:3 (d) 4:9 6. The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is: (a) 27:20 (b) 20:27 (c) 9:4 (d) 4:9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4 	: 3 : 3 : 9 ne radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. ratio of their volumes is: 7 : 20 : 0 : 27 : 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	(a) 1 : 2	111 16 100 Sto 1921 119 11 COULTING 600 SI 193
 (d) 4:9 6. The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is: (a) 27:20 (b) 20:27 (c) 9:4 (d) 4:9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4 	ne radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. ratio of their volumes is: 7:20 9:27 :4 :9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: :3 :4 :4	731 C)	out the spool of the sing 94. Could the popular
 (d) 4:9 6. The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. The ratio of their volumes is: (a) 27:20 (b) 20:27 (c) 9:4 (d) 4:9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4 	ne radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. ratio of their volumes is: 7 : 20 9 : 27 : 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	(c) 2:3	Colling the position significant the sport
6. The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. The ratio of their volumes is: (a) 27 : 20 (b) 20 : 27 (c) 9 : 4 (d) 4 : 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2 : 3 (b) 3 : 4 (c) 1 : 4	the radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. ratio of their volumes is: 7 : 20 80 : 27 1 : 4 1 : 9 The radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: 1 : 3 1 : 4 1 : 4		7. CO. Williams Goodle German 97. Collustinos
 (a) 27: 20 (b) 20: 27 (c) 9: 4 (d) 4: 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2: 3 (b) 3: 4 (c) 1: 4 	7: 20 20: 27 : 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4		
 (b) 20: 27 (c) 9: 4 (d) 4: 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2: 3 (b) 3: 4 (c) 1: 4 	: 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	2000	their volumes is:
 (b) 20: 27 (c) 9: 4 (d) 4: 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2: 3 (b) 3: 4 (c) 1: 4 	: 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	(a) 27:20	73 210 194 COULTING 600 031 92 2111 94. CO.
(c) 9: 4 (d) 4: 9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3: 4 (c) 1: 4	: 4 : 9 the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	O.Y. O	3/2 42, 1/2, 1/2, 201, 4/1, 20, 20, 40, 2/1, 194, 10
 (d) 4:9 7. If the radius of base of a right circular cylinder is halved, keeping the height same, the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4 	the radius of base of a right circular cylinder is halved, keeping the height same, ratio of the volume of the reduced cylinder to that of the original cylinder is: : 3 : 4 : 4	(c) 9:4	(3) 1/2 1/2 1/2 (0) (1) 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0,
the ratio of the volume of the reduced cylinder to that of the original cylinder is: (a) 2:3 (b) 3:4 (c) 1:4	ratio of the volume of the reduced cylinder to that of the original cylinder is:	(d) 4:9 C	2008 103 810 194 100 OLL 1116 800 081 98 8111
(a) 2 : 3 (b) 3 : 4 (c) 1 : 4			
(b) 3:4 (c) 1:4 (c) (i) (i) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	14 COUNTING OO STORY STUDY COUNTRIES OF	1.0	the volume of the reduced cylinder to that of the original cylinder is:
(b) 3:4 (c) 1:4 (d) 4:1 8. If the volumes of a cube is 1728 cm³, the length of its edge is equal to: (a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	: 4 : 1 the volumes of a cube is 1728 cm³, the length of its edge is equal to: cm 2 cm 8 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube dige 4.2 cm is: .7 2.6 8.2	77 C	" Will " Coll " The Spool of the Spool of
(c) 1 : 4 (d) 4 : 1 8. If the volumes of a cube is 1728 cm³, the length of its edge is equal to: (a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: . (a) 9.7	: 4 : 1 the volumes of a cube is 1728 cm³, the length of its edge is equal to: cm 2 cm 8 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube lige 4.2 cm is: .7 2.6 8.2	()	CO, William Do Silv Person A. Coulding her Do.
 (d) 4:1 8. If the volumes of a cube is 1728 cm³, the length of its edge is equal to: (a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7 	the volumes of a cube is 1728 cm³, the length of its edge is equal to: cm 2 cm 8 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube dige 4.2 cm is: .7 2.6 8.2		1. Coulting Good of Good Parish Coulting the
 8. If the volumes of a cube is 1728 cm³, the length of its edge is equal to: (a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7 	the volumes of a cube is 1728 cm³, the length of its edge is equal to: cm 2 cm 8 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube lige 4.2 cm is: .7 2.6 8.2	(d) 4:1	3,47. Collustinos possios despirable contribo
(a) 7 cm (b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	cm 2 cm 8 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube lige 4.2 cm is: .7 2.6 8.2	8. If the vol	umes of a cube is 1728 cm³, the length of its edge is equal to:
(b) 12 cm (c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	2 cm 9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube alge 4.2 cm is: .7 2.6 8.2	(a) 7 cm	1210,194 Courtill 8000 31 193 811,194 CO. U
(c) 18 cm (d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube alge 4.2 cm is: .7 2.6 8.2	(b) 12 cm	" Se Fing A. Colluis Hor Popular Pering A.
(d) 19 cm 9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	9 cm ne volume (in cm³) of the largest right circular cone that can be cut off from a cube alge 4.2 cm is: .7 2.6 8.2	(c) 18 cm	28, 49, 28, 119, 10, 00, 11, 16, 60, 08, 42, 110, 94.
9. The volume (in cm³) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm is: (a) 9.7	ne volume (in cm³) of the largest right circular cone that can be cut off from a cube alge 4.2 cm is: .7 2.6 8.2	(d) 19 cm	300 310 925 119 A COU 411 18 60 03 19 8 11 19
(a) 9.7 O CHILLIAN CONTROL OF THE CO	age 4.2 cm is: 0.0 of the state	9. The volu	ne (in cm³) of the largest right circular cone that can be cut off from a cube
(a) 2. 50 (U) The 30 (31 92 TI) 77 CO, (U) "10 100,	2.6 COULTING GOOD ON OF STANDAY CONTINUED ON A STANDAY CONTINUED ON	or eage 4.2	CM.12: 50 00 1/0, 2/17/19/10 00/1/1/10 6/00 03/19/2
TOOLSTONE ON A AND AND AND AND AND AND AND AND AND	8.2 A COUNTING OO STORY OF THE COUNTING OF	(a) 9.7	out the so out get in 94, could the poor
(p) 25.6 COUNTILL SO OUT 19 STIPLY COUNTY THE PO	82 11 197 COLUMNES O SIGNESTING COUNTINGS	(b) 72.6	Coulting So Osi 493 Sing 94. Co. Unithe So
(c) 58.2 4 . CO (n) 11 10 10 00 10 510 10 10 10 10 10 10 10 10 10 10 10 10 1	in 197. Co. Withe bo si 92 40 41 Coll Will We	(c) 58.2	1. Co, Will He Pool Sto Petring To Out The Go
31,92,119,4; coll 41,160,00, 19,29,11,19,7; co. 14,		(3) (6)	3 47 4. Co. 41, 40, 40, 41, 78, 10, 11, -04,

Men


700,91

- (d) 19.4
- 20 aldstudy, on the boardstul 10. The circumference of the edge of hemispherical bowl is 132 cm. When π is taken as $\frac{22}{7}$, the capacity of bowl in cm³ is:
- (a) 2772
- (b) 924
- (c) 19404 (d) 9702

Very Short Questions:

- What is the capacity of a cylindrical vessel with a hemispherical portion raised upward at the bottom?

 I solid cone of radius r and height h is placed over a solid cylinder the base radius and height as that of a cone, What is the ea of the combined solid? epoardstudy.c Dograsing A. Cold ,eboardstud

- 92 FINDA COLLINGO Qardstudy comits. Two identical solid hemispheres of equal base radius r cm are struck together along their bases. What will be the total surface area of the combination?

 A solid ball is exactly fitted inside the column of the ball?
- If two cubes of edge 5 cm each are joined end to end, find the surface area-
- A mason constructs a wall of dimensions 270 cm × 300 cm × 350 cm with the bricks each of size 22.5 cm × 11.25 cm × 8.75 cm and it is assumed the space is covered by the mortar. Find the number of hand I.A. CONTROBORIDE comine bo rahoards ACHILIDAY.COX minebook mardstul ardstudy

MATHEMATICS SURFACE AREAS AND VOLUMES

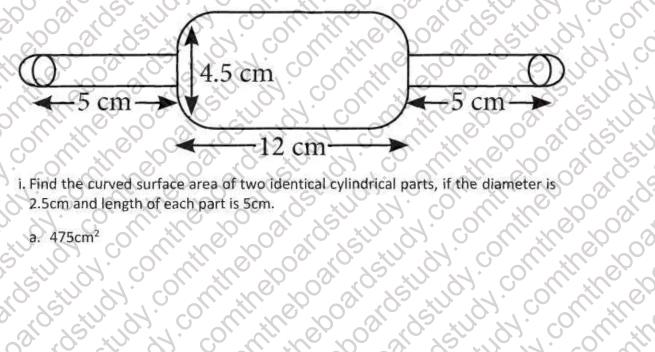
- The radii of the ends of a frustum of a cone 40 cm high are 20 cm and 11 cm. Find its slant height.
- Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere?
- A cone, a hemisphere and a cylinder stand on equal bases and have the same height. What is the ratio of their volumes?

ort Questions

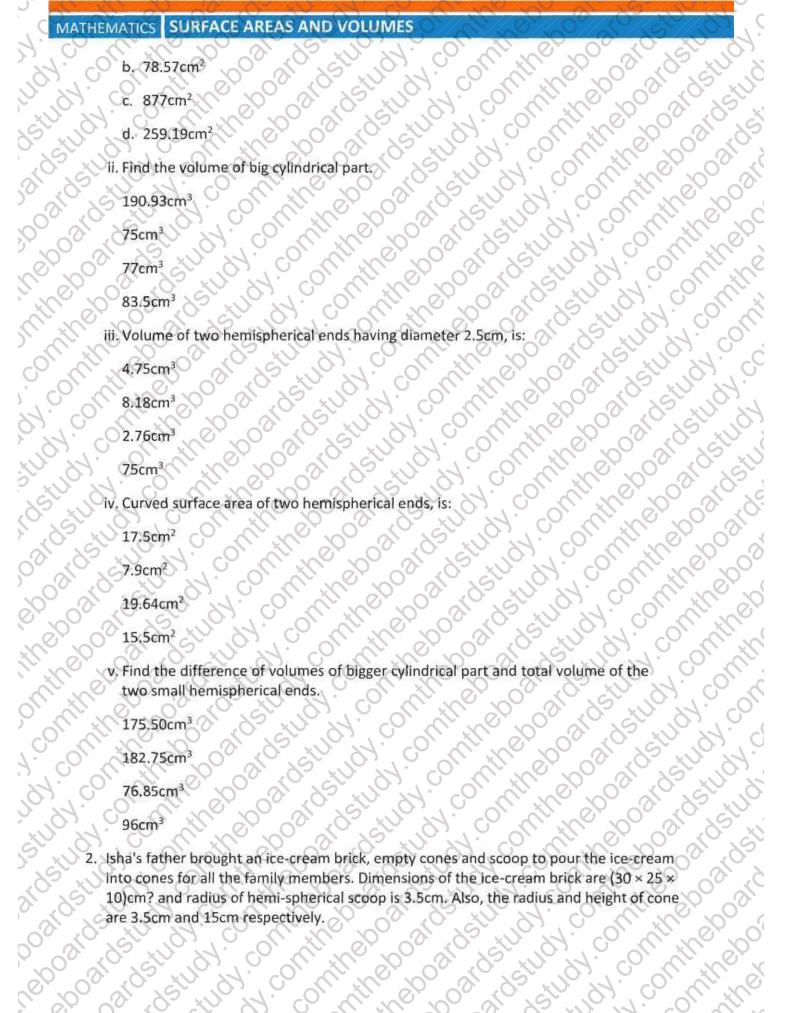
- What is the ratio of the volume of a cube to that of a sphere which will fit inside
- The slant height of the frustum of a cone is 5 cm. If the difference between the radii of its two circular ends is 4 cm, find the height of the frustum.
- If the slant height of the frustum of a cone is 10 cm and the perimeters of its circular base are 18 cm and 28 cm respectively. What is the curved surface area of the frustum?
- The slant height of a frustum of a cone is 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm. Find the curved surface area of the frustum.
- A vessel is in the form of a hollow hemisphere mounted by a hollow 7 cm cylinder. The diameter of the hemisphere is 14 cm and the total height T of the vessel is 13 cm. Find the inner surface area of the vessel.
- Two cubes each of volume 64 cm³ are joined end to end. Find the surface area of the resulting cuboid.
- A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.
- The dimensions of a solid iron cuboid are $4.4 \text{ m} \times 2.6 \text{ m} \times 1.0 \text{ m}$. It is melted and
- same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.

n toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius on its circular face. The total height of the toy is 15.5 cm. Find the total surface area of the toy. I was countille post de ACHINAY.CO wayogidi. mardsti ardstud

MATHEMATICS SURFACE AREAS AND VOLUMES


A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter I of the hemisphere is equal to the edge of the cube Determine the surface area of the remaining solid.

Long Questions:


- A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 7 cm and the height of the cone is equal to its diameter. Find the volume of the solid. (Use π =
- A hemispherical tank, full of water, is emptied by a pipe at the rate of $\frac{25}{5}$ litres per sec. How much time will it take to empty half the tank if the diameter of the base of the tank is 3 m?
- Water is flowing through a cylindrical pipe, of internal diameter 2 cm, into a cylindrical tank of base radius 40 cm, at the rate of 0.4 m/s. Determine the rise in level of water in the tank in half an hour.
- 150 spherical marbles, each of diameter 1.4 cm, are dropped in a cylindrical vessel of diameter 7 cm containing some water, which are completely immersed in water. Find the rise in the level of water in the vessel.
- From a solid cylinder of height 2.8 cm and diameter 4.2 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid. (Take π =

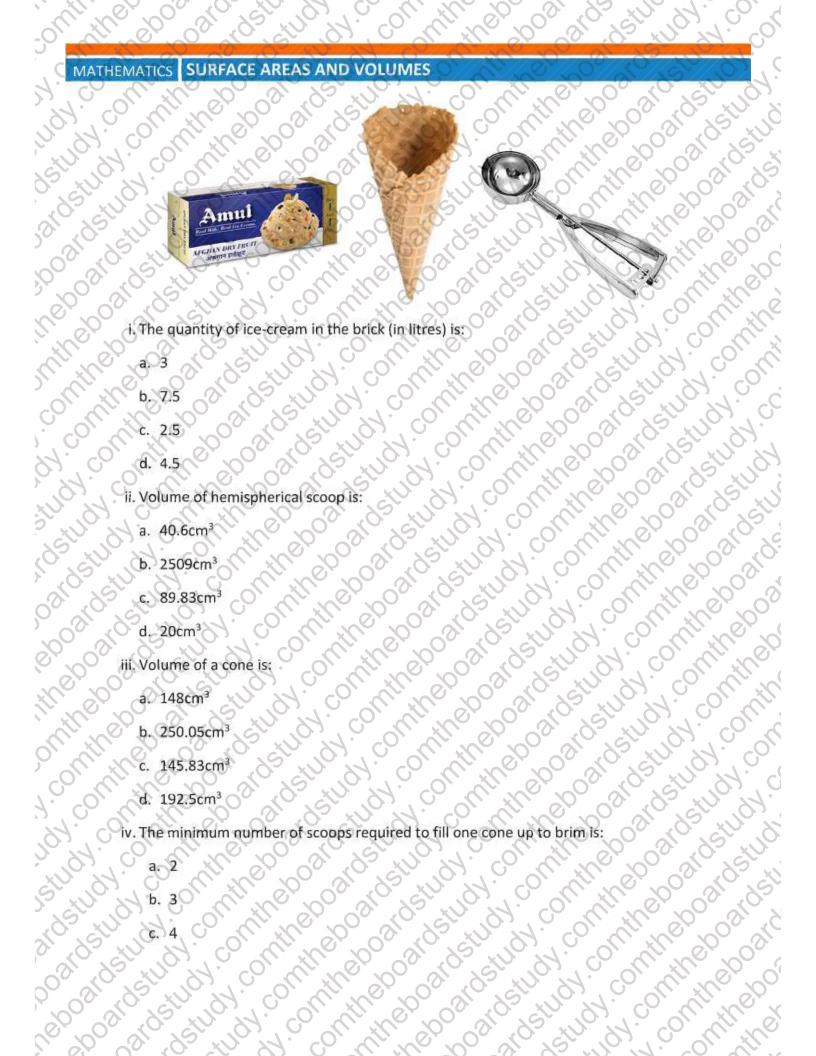
Case Study Questions:

1. Arp an a is studying in X standard. While helping her mother in kitchen, she saw rolling pin made of steel and empty from inner side, with two small hemispherical ends as

- indu contineboards! wastq2jiq4,cou ard study comits mineboardstu cultillepogly rahoardstudy An conthebo
- HINY COMTHE "YEHIYY COM

nahoaids

mineboal


contined

hoardstur

ardstudy

4cH194.c0

""HA COULT

- v. The number of cones that can be filled up to brim using the whole brick is: ooardstudy.com 3ardstudy.comth , eboardstudi

 - b. 39

Assertion Reason Questions-

1. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

,eboardstud!

- (a) Both A and R are true and R is the correct explanation of A.

Assertion: If diameter of a sphere is decreased by 25%, then its curved surface area is decreased by 43.75%.

Reason: Curved surface area is increased when diameter.

2. Directions: In the curved surface area is increased when diameter. ., 23%, then its curved surface area is

... curved surface area is increased when diameter decreases

2. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

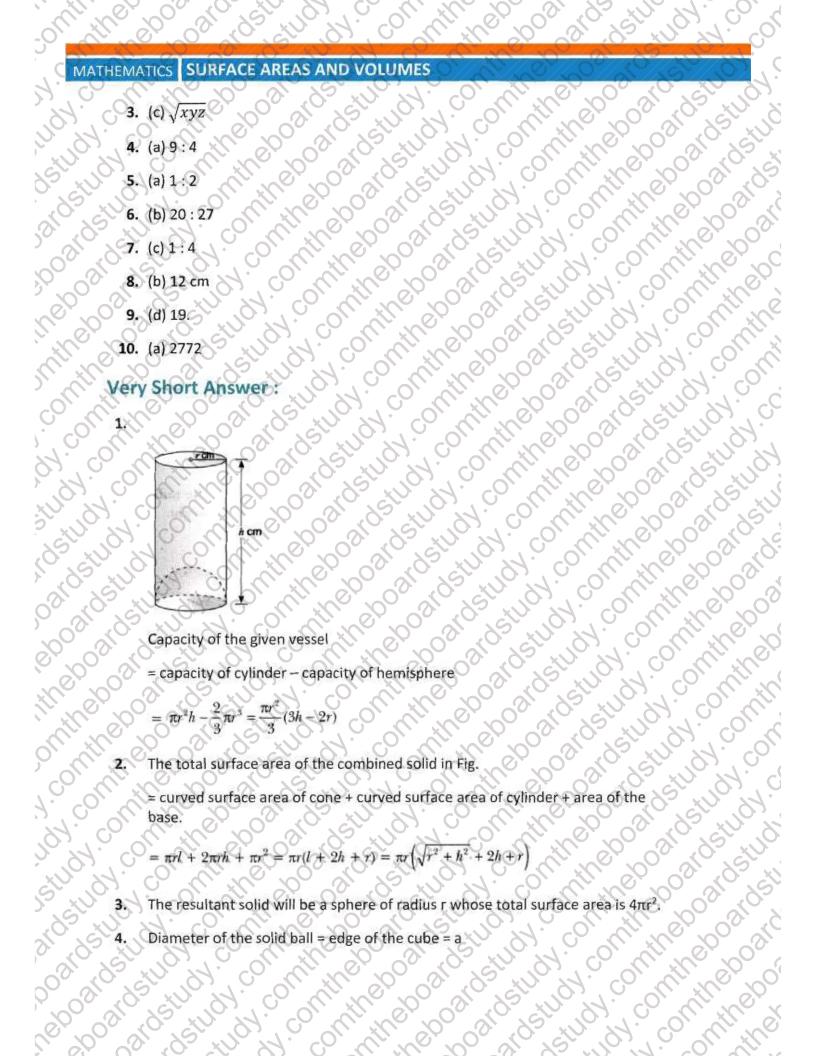
(a) Both A and R are true and R is the correct explanation of A

(b) Both A and R are true and R is not the correct

(c) A is true but R is false.

(d) Both A and R are

Reason: If external dimensions of a rectangular box be I, b and h and the thickness of its sides be x, then its internal volume is (I-2x) (b-2x) (b-2x).


Answer Kev-Journal Stridy Coulting Odd Stridy Cold

in a horizontilla in the boat mine boards tudy comits

comine boardstudy.cc

in contheboardst

- 2. (a) 3 1 : 2

$$= \pi r^2 h - \frac{2}{3}\pi r^3 = \frac{\pi r^2}{3}(3h - 2r)$$

$$= \pi r l + 2\pi r h + \pi r^2 = \pi r (l + 2h + r) = \pi r \left(\sqrt{r^2 + h^2} + 2h + r \right)$$

MATHEMATICS SURFACE AREAS AND VOLUMES

Volume of the ball =
$$\frac{4}{3}\pi\left(\frac{a}{2}\right)^3 = \frac{4}{3}\times\frac{1}{8}\pi a^3 = \frac{1}{6}\pi a^3$$

5. Total length (i) = 5 + 5 = 10 cm

Breadth (b) = 5 cm, Height (h) = 5 cm

Surface Area = 2 (lb + bh + lh)

= 2(10 × 5 + 5 × 5 + 5 × 10) = 2 × 125 = 250 cm²

6. Volume of iron piece = Volume of the sphere formed

= 49 × 33 × 24 = $\frac{4}{3}\pi r^2$

5. Total length (I) =
$$5 + 5 = 10$$
 cm

$$= 2(10 \times 5 + 5 \times 5 + 5 \times 10) = 2 \times 125 = 250 \text{ cm}^2$$

$$= 49 \times 33 \times 24 = \frac{4}{3} \pi r^2$$

$$r^3 = \frac{49 \times 33 \times 24 \times 3 \times 7}{4 \times 22}$$

$$r = 21 \text{ cm}$$

7. Space occupied with bricks =
$$\frac{7}{8}$$
 × volume of the wall

$$= \frac{7}{8} \times 270 \times 300 \times 350$$

Number of bricks
$$\approx$$
 Space occupied with bricks $=$ $\frac{\frac{7}{8} \times 270 \times 300 \times 350}{\text{Volume of one brick}} = \frac{11,200}{22,5 \times 11.25 \times 8,75} = 11,200$

MATHEMATICS SURFACE AREAS AND VOLUMES

Nolume of the ball =
$$\frac{d}{3}\pi[\frac{d}{2}]^2 = \frac{d}{3}\sqrt{\frac{1}{8}}\pi n^2 = \frac{1}{6}\pi n^2$$

5. Total length (I) = 5 + 5 = 10 cm;

Breadth (b) = 5 cm; Height (h) = 5 cm

Surface Area = 2 (I0 + bh + 1h)

= 2(10 + 5 + 5 × 5 + 5 × 10) = 2 × 125 = 250 cm²

6. Volume of iron piece = Volume of the sphere formed

= $49 \times 33 \times 24 = \frac{2}{3}\pi r^2$
 $\frac{d}{4} \times \frac{22}{2}$

F = $\frac{21 \text{ cm}}{4 \times 22}$

7. Space occupied with bricks = $\frac{2}{3} \times \text{Volume of the wall}$

= $\frac{2}{6} \times 270 \times 300 \times 350$

Number of hincks = $\frac{8 \text{piece occupied with thinck}}{\text{Volume of one brick}} = \frac{2}{2 \times 5 \times 11.25 \times 8.75} = 11,200$

8.

$$f = \sqrt{h^2 + (r_1 - r_1)^2} = \sqrt{1600 + 81} = \sqrt{1681} = 41 \text{ cm}$$

9. As per question:

Volume of a cone: Volume of a hemisphere: Volume of a cylinder

= $\frac{2}{3}\pi r^2 + 3\pi r^2 = \sqrt{\text{units}} \cdot r^2 / 6$

= $\frac{1}{3}\pi r^2 + \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 + \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 : \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 : \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 : \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 : \frac{2}{3}\pi r^2 : \pi r^2 / 6$

= $\frac{1}{3}\pi r^2 : \frac{2}{3}\pi r^2 : \pi r^2 / 6$

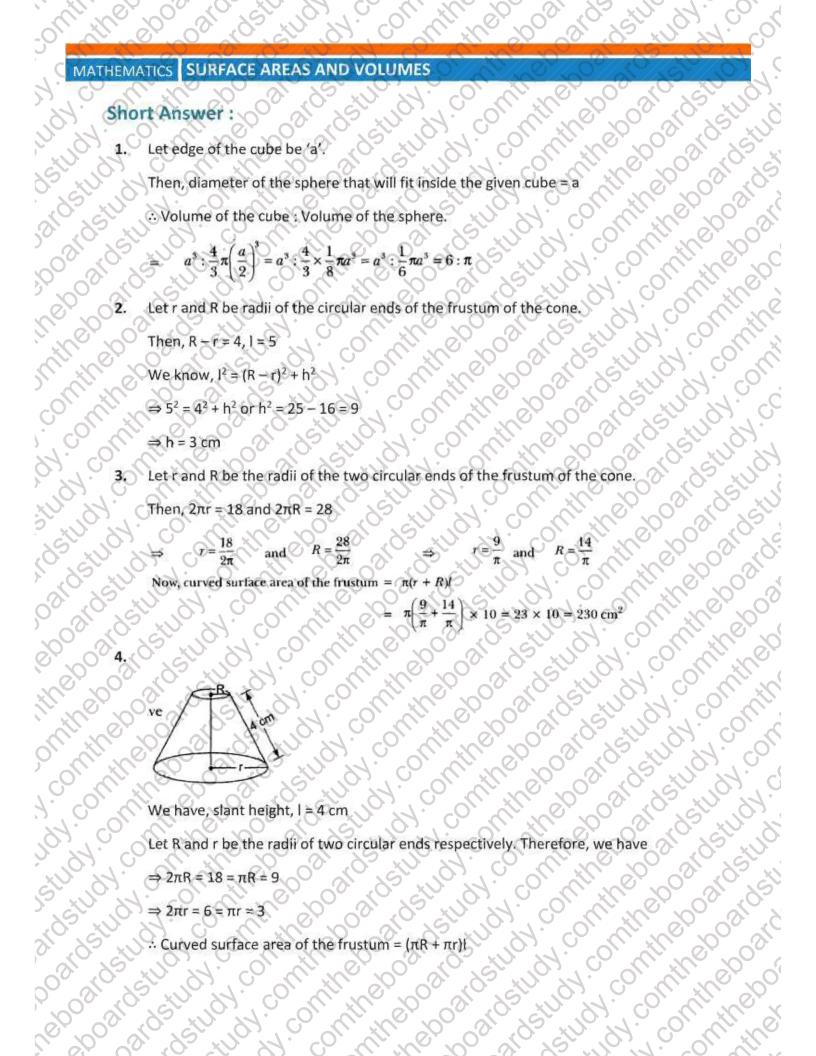
$$=\frac{2}{3}\pi r^2 = 3\pi r^2 = 0$$
, units $r = \frac{9}{2}$ units

$$= \frac{1}{3}\pi r^2 h : \frac{2}{3}\pi r^3 : \pi r^2 h$$

$$= \frac{1}{3}\pi r^3 : \frac{2}{3}\pi r^3 : \pi r^3 \qquad (\because r = L$$

$$= a^3 \cdot \frac{4}{3}\pi \left(\frac{a}{2}\right)^3 = a^3 \cdot \frac{4}{3} \times \frac{1}{8}\pi a^3 = a^3 \cdot \frac{1}{6}\pi a^3 = 6 \cdot \pi$$

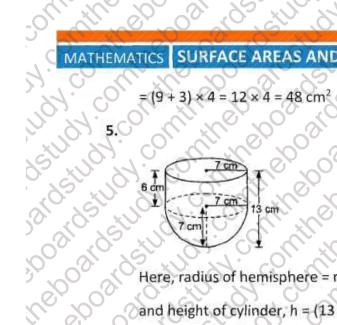
Then,
$$R - r = 4, 1 = 5$$


$$\Rightarrow$$
 5² = 4² + h² or h² = 25 - 16 = 9

$$\Rightarrow$$
 h = 3 cm

$$R = \frac{28}{2\pi}$$

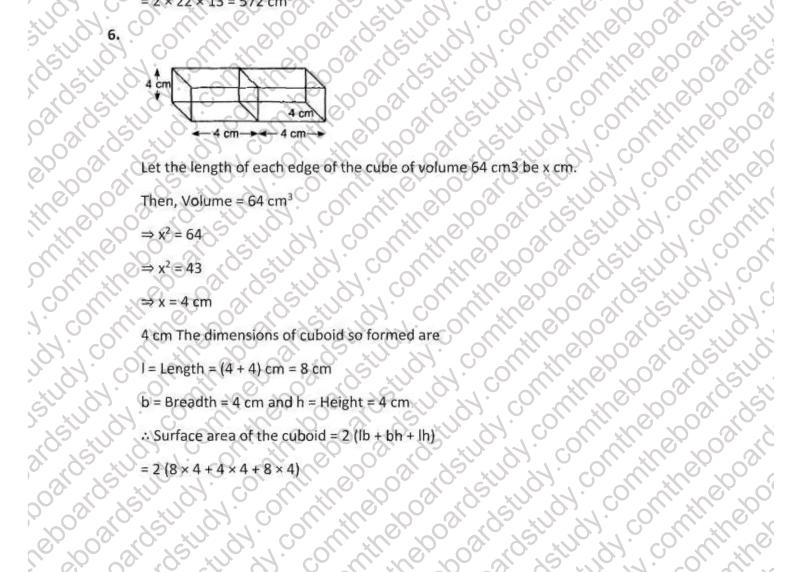
$$r = \frac{9}{2}$$
 and


$$= \pi \left(\frac{9}{\pi} + \frac{14}{\pi} \right) \times 10 = 23 \times 10 = 230 \text{ cm}^2$$

$$\Rightarrow 2\pi R = 18 = \pi R = 9$$

$$\Rightarrow 2\pi r = 6 = \pi r = 3$$

$$= (9 + 3) \times 4 = 12 \times 4 = 48 \text{ cm}^2$$



Here, radius of hemisphere = radius of cylinder = r cm = 7 cm and height of cylinder, h = (13 - 7) cm = 6 cm Now, inner surface area of the vessel = Curved surface area of the cylindrical part + Curved surface area of hemispherical part = $(2\pi rh + 2\pi r2) = 2\pi r (h + r)$ $12 \times \frac{22}{7} \times 7 (6 + 7)$ $12 \times 22 \times 13 = 572$ cm² Let the length of each edge of the cube of volume 64 cm3 be x cm.

Then, Volume = 64 cm³. $\Rightarrow x^2 = 64$ $\Rightarrow x^2 = 43$ $\Rightarrow x = 4 \text{ cm}$ 4 cm The dimensions of cuboid so form: 1 = Length = (4 + 4) cm = 8 cm b = Breadth = 4 cm and b $\therefore \text{Surface area of}$ $= 2 (8 \times 4 \text{ fm})$

$$= 2 \times \frac{22}{7} \times 7 (6 + 7)$$

$$= 2 \times 22 \times 13 = 572 \text{ cm}^2$$

$$\Rightarrow x^2 = 64$$

$$\Rightarrow$$
 $x^2 = 43$

$$\Rightarrow$$
 x = 4 cm

$$I = Length = (4 + 4) cm = 8 cm$$

$$= 2(8 \times 4 + 4 \times 4 + 8 \times 4)$$

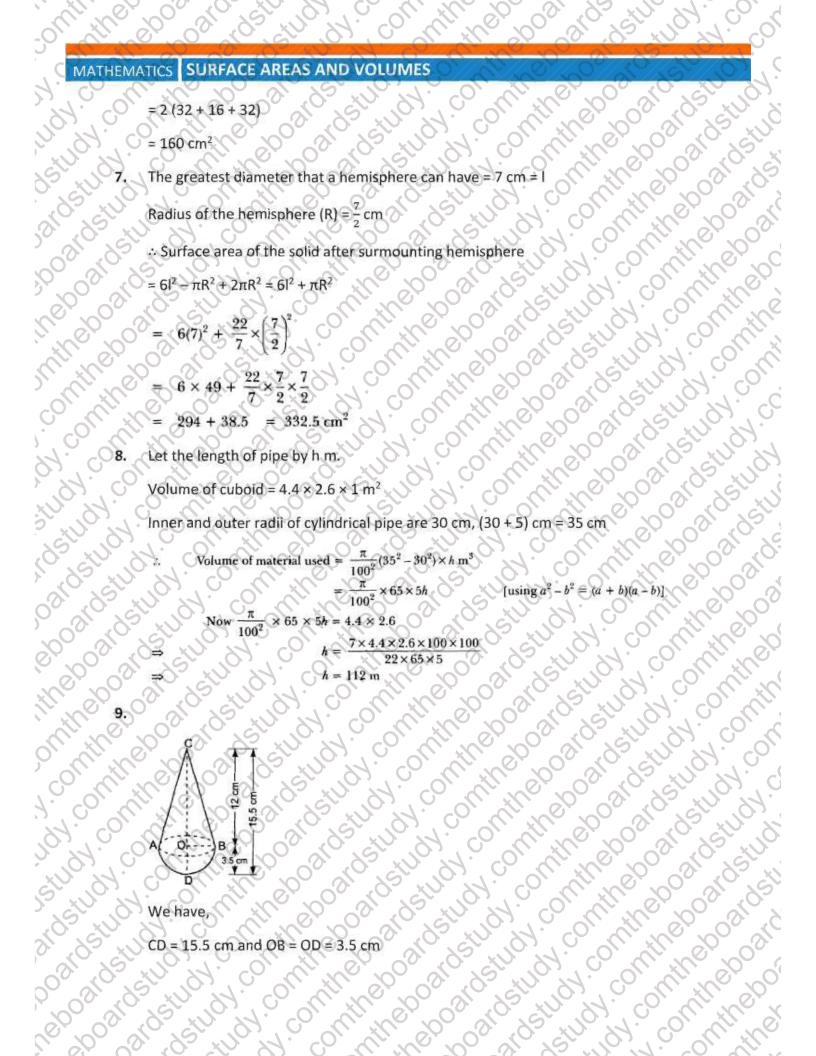
$$= 2 (32 + 16 + 32)$$

$$=6l^2-\pi R^2+2\pi R^2=6l^2+\pi R^2$$

$$= (6(7)^2 + \frac{22}{7} \times \left(\frac{7}{2}\right)^2$$

$$= 6 \times 49 + \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$$

$$= 294 + 38.5 = 332.5 \text{ cm}^2$$


Volume of material used =
$$\frac{\pi}{100^2} (35^2 - 30^2) \times h.m.$$

$$= \frac{\pi}{100^2} \times 65 \times 5h \qquad [\text{using } a^2 - b^2 \equiv (a+b)(a-b)]$$

Now
$$\frac{\pi}{100^2} \times 65 \times 5h = 4.4 \times 2.6$$

$$h = \frac{7 \times 4.4 \times 2.6 \times 100 \times 100}{22 \times 65 \times 5}$$

$$h = 112$$

Let r be the radius of the base of cone and h be the height of conical part of the

Then,
$$r = OB = 3.5 \text{ cm}$$

$$h = OC = CD - OD = (15.5 - 3.5) \text{ cm} = 12 \text{ cm}$$

$$l = \sqrt{r^2 + h^2} = \sqrt{3.5^2 + 12^2}$$

$$= \sqrt{12.25 + 144} = \sqrt{156.25} = 12.5 \text{ cm}$$
Also, radius of the hemisphere, $r = 3.5 \text{ cm}$

$$\therefore \text{ Total surface area of the toy}$$

$$= \text{Surface area of cone} + \text{Surface area of h}$$

$$= \pi r l + 2\pi r^2 = \pi r (l + 2r) = \frac{22}{7} \times 3.5 \text{ (12.5)}$$

$$= \frac{22}{7} \times 3.5 \times 19.5 = 214.5 \text{ cm}^2$$

Let r be the radius of the base of cone and h be the height of conical part of the toy.

Then,
$$r = 0B = 3.5 \text{ cm}$$
 $h = 0C = CD - 0D = (15.5 - 3.5) \text{ cm} = 12 \text{ cm}$
 $l = \sqrt{r^2 + b^2} = \sqrt{3.5^2 + 12^2}$
 $= \sqrt{12.25 + 144} = \sqrt{156.25} \approx 12.5 \text{ cm}$

Also, radius of the hemisphere, $r = 3.5 \text{ cm}$

Total surface area of the toy

 $= \text{Surface area of once} + \text{Surface area of hemisphere}$
 $= rot + 2rot^2 = rot(+ 2r) = \frac{22}{7} \times 3.5 (12.5 + 2 \times 3.5)$
 $= \frac{22}{7} \times 3.5 \times 19.5 = 214.5 \text{ cm}^2$

10. Here, we have

Edge of the cube $= l = \text{Diameter of the hemisphere}$

Therefore, radius of the hemisphere $= \frac{l}{2}$

A surface area of the remaining solid after cutting out the hemispherical depression $= -6t^2 - \pi \left(\frac{l}{2}\right) + 2\pi \left(\frac{l}{3}\right)^3$
 $= -6t^2 + \pi \times \frac{l}{4} = \frac{l^4}{4} (24 + \pi)$

Long Answer:

1. Radius, $t = 7 \text{ cm}$

Height of cone, $h = 2(7) = 14 \text{ cm}$

Volume of solid = Vol. of hemisphere + Volume of cone

10. Here, we have

Edge of the cube =
$$I = D$$
 iameter of the hemisphere

Therefore, radius of the hemisphere = $\frac{1}{2}$.

A Surface area of the remaining solid after cutting out the hemispherical depression = $6t^2 - \pi \left(\frac{1}{2}\right)^2 + 2\pi \left(\frac{1}{2}\right)^2$.

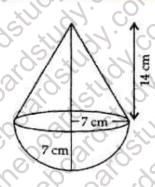
= $6t^2 + \pi \times \frac{t^2}{4} = \frac{t^2}{4}(24 + \pi)$.

Long Answer:

1. Radius, $t = 7$ cm.

Height of cone, $h = 2(7) = 14$ cm.

Volume of solid = Vol. of hemisphere + Volume of cone.


$$= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$$

$$= \frac{1}{3}\pi r^2 (2r + h)$$

$$= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7(2(7) + 14)$$

$$= \frac{22 \times 7}{3} \times 28 = \frac{4312}{3}$$

$$= 1437.\overline{3} \text{ cm}^3$$

Here,
$$r = \frac{3}{2}$$
 m
 $\frac{25}{7}$ lt = $\frac{1}{1000} \times \frac{25}{7}$ m³ = $\frac{1}{280}$ m³ ...[: 1 lt. = $\frac{1}{1000}$ m

MATHEMATICS SURFACE AREAS AND VOLUMES

$$= \frac{2}{3} \pi r^3 + \frac{1}{3} \pi r^3 h$$

$$= \frac{1}{3} \pi r^2 (2r + h)$$

$$= \frac{1}{3} \times \frac{27}{2} \times 7 \times 7 \times 2(7) + 143$$

$$= \frac{22 \times 7}{3} \times 28 = \frac{3312}{3}$$

$$= 1437.5 \text{ cm}^3$$
2.

Here, $r = \frac{3}{2} \text{ m}$

$$\frac{75}{7} \text{ if:} = \frac{1}{1000} \times \frac{25}{7} \text{ m}^3 = \frac{1}{260} \text{ m}^3 \cdot 1(111. \times \frac{7}{1000} \text{ m}^3)$$
Required (time = $\frac{1}{2} \frac{1}{\sqrt{10.6}} \text{ of pipe}$

$$= \frac{1}{2} \times \frac{3}{2} \times \frac{27}{3} \times \frac{3}{3} \times \frac{3}{2}$$

$$= \frac{22 \times 9}{\sqrt{12} \times 9} \times \frac{300}{990} \text{ secs.}$$

$$= \frac{16 \text{ mins.}}{1000} \text{ 30 secs.}$$

$$\therefore \text{ Required time is } 16 \frac{1}{2} \text{ mins.}$$
3. Radius of tank, $r1 = 40 \text{ cm}$
Internal radius of cylindrical pipe, $r_2 = \frac{2}{3} = 1 \text{ cm}$
Let the height of rises water, $f_1 = 7$
Length of water flow in 13 econd = 0.4 in
$$= \frac{1}{30} \times 100 = 90 \text{ cm}$$

$$\therefore \text{ Length of water flow in 30 minutes, } h2$$

$$= 40 \times 60 \times 30 = 72,000 \text{ cm}$$
Volume of water flow from cylindrical pipe in half an hour

$$=\frac{4}{10} \times 100 = 40 \text{ cm}$$

$$= 40 \times 60 \times 30 = 72,000 \text{ cm}$$

MATHEMATICS SURFACE AREAS AND VOLUMES

As
$$\pi r_1^2 h_1 = \pi r_2^2 h_2$$
 $\therefore 40 \times 40 \times h_1 = 1 \times 1 \times 72,000$
 $h_1 = \frac{72,000}{40 \times 40} = 45 \text{ cm}$
 \therefore Level of water to cylinder tank rises in half an hour, $h_1 = 45 \text{ cm}$

4.

Radius of a marble, $r = \frac{1.4}{2} = \frac{7}{10} \text{ cm}$,

Radius of cylinder, $R = \frac{7}{2} = 3.5 \text{ cm}$
No, of spherical marbles

Vol. of water rise in cylinder

Vol. of one marble (sphere)

$$150 = \frac{4}{3} \times \pi \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}$$

$$\pi = \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}$$

$$f_1 = \frac{50 \times 2 \times 2 \times 4 \times 4}{10 \times 10 \times 10} \times \frac{56}{10} = 5.6 \text{ cm}$$
 \therefore Rise in water level, $h = \frac{56}{10} = 5.6 \text{ cm}$

Radius of a marble,
$$r = \frac{1.4}{2} = \frac{7}{10}$$
 cm,

$$150 = \frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{4}{3} \times \pi \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}}$$

Vol. of cylinder =
$$\pi r^2 h$$

Vol. of sphere = $\frac{4}{3}\pi r^3$

Vol. of water rise in cylinder

Vol. of one marble (sphere)

$$\frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{4}{3} \times \pi \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}}$$

$$\frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{4}{3} \times \pi \times \frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}}$$

$$\frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}}$$

$$\frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}}$$

$$\frac{\pi(\frac{7}{2} \times \frac{7}{2} \times h)}{\frac{7}{10} \times \frac{7}{10}}$$

$$\frac{\pi(\frac{7}{$$

Rise in water level,
$$h = \frac{56}{10} = 5.6$$
 cm

$$h_1 = \frac{72,000}{40 \times 40} = 45 \text{ cm}$$

$$\therefore \text{ Level of water in cylinder tank rises in half an hour, } h_1 = 45 \text{ cm}$$
4.

Radius of a marble, $r = \frac{14}{2} = \frac{7}{10} \text{ cm}$,

Radius of cylinder, $R = \frac{7}{2} = 3.5 \text{ cm}$

No, of spherical marbles
$$\begin{array}{c} \text{Vol. of water rise in cylinder} \\ \text{Vol. of one marble (sphere)} \\ \hline 150 = \frac{\pi \left(\frac{7}{2} \times \frac{7}{2} \times h\right)}{\frac{4}{3} \times \pi \cdot \frac{7}{10} \times \frac{7}{10}} \\ \hline 100 = \frac{\pi \left(\frac{7}{2} \times \frac{7}{2} \times h\right)}{\frac{4}{3} \times \pi \cdot \frac{7}{10} \times \frac{7}{10}} \\ \hline 100 = \frac{\pi \left(\frac{7}{2} \times \frac{7}{2} \times h\right)}{\frac{4}{3} \times \pi \cdot \frac{7}{10} \times \frac{7}{10}} \\ \hline 100 = \frac{50 \times 2 \times 2 \times 4 \times 2}{100 \times 100 \times 10} = \frac{56}{10} \text{ cm} \\ \hline 100 = \frac{50 \times 2 \times 2 \times 4 \times 2}{100 \times 100 \times 100} = \frac{56}{10} \text{ cm} \\ \hline 100 = \frac{47}{100 \times 10} + \frac{1}{100 \times 10} = \frac{56}{100} = 5.6 \text{ cm} \\ \hline 5.$$

Given: $r = \frac{42}{2} = 2.1 \text{ cm}$
 $h = 2.8 \text{ cm}$
 $i = \sqrt{r^2 + h^2} = \sqrt{(21)^2 + (2.8)^2}$
 $= \sqrt{4.41 + 7.84} = \sqrt{12.25}$
 $= \sqrt{3.41 + 7.84} = \sqrt{12.25}$
 $= \sqrt{3.5 \text{ cm}}$

T.S. area of the remaining solid
 $= 5.5 \text{ cm} = 5.6 \text{ cm}$

T.S. area of the remaining solid
 $= 5.5 \text{ cm} = 5.6 \text{ cm}$
 $= 2\pi h + \pi r^2 \times \pi r l$
 $= \pi r(2h + r) + \pi l$
 $= \pi r(2h + r) + 1$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 + 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$
 $= \frac{22}{7} \times 2.1 (5.6 \times 2.1 + 3.5)$

1. Answer:

$$=2\times 2\pi \text{rh}=2\times 2 imes rac{22}{7} imes rac{2.5}{2} imes 5$$

$$=78.57$$
cm²

$$=\frac{22}{7}\times\frac{4.5}{2}\times\frac{4.5}{2}\times12190.93$$
cm³

$$=\frac{2\times2}{3}\times\frac{22}{7}\times(\frac{2.5}{2})^3=8.18\text{cm}^3$$

$$= 2 \times 2\pi r^2 = 2 \times 2 \times \frac{22}{7} \times \frac{2.5}{2} \times \frac{2.5}{2} = 19.64$$
cm³

 $=\pi r^2 h$ $\times 12190.93 cm^3$ $=\frac{2\cdot 2\cdot 3}{2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3} = 8.18 cm^3$ In (c) 19.64 cm² $= 0.00 cm^2$ $= 0.00 cm^3$ $= 0.00 cm^3$

Solution:

Quantity of ice-cream in the brick = volume of
$$\frac{7500}{1000}l$$
 [: $1l=1000\mathrm{cm}^3$]

 $=7.5l$

ii. (c) $89.83\mathrm{cm}^3$

Solution:

Volume of hemispherical scoop = $\frac{2}{3}\pi r^3$
 $=\frac{2}{3}\times\frac{22}{7}\times(3.5)^3=\frac{1886.5}{21}=89.8$

$$=\frac{2}{3}\times\frac{22}{7}\times(3.5)^3=\frac{1886.5}{21}=89.83$$
cm³

MATHEMATICS SURFACE AREAS AND VOLUMES

(ii) 7.5

Solution:
Quantity of Ige-cream in the Brick = volume of the Brick =
$$(30 \times 25 \times 10) \text{cm}^3$$
 = 7500cm³ (
$$= \frac{75002}{1000} I \quad \{\cdot 11 = 1000 \text{cm}^3\} \}$$

$$= 7.5 I.$$
(ii) (c) \$9.83 cm² \text{ Solution:}
Volume of hemispherical \$coop. = $\frac{9}{3} \pi t^3$ \text{ = $\frac{2}{3} \times \frac{22}{7} \times (3.5)^3 = \frac{1886.6}{21} = 89.83 \text{cm}^3$
(ii) (d) \$192.5 cm² \text{ Solution:}
Volume of cone \$\approx \frac{1}{3} \pi \frac{2}{3} \text{ = } \frac{2}{21} = 192.5 \text{ cm}^3

iii) (d) \$192.5 cm² \text{ Solution:}

Notine of cone \$\approx \frac{1}{3} \pi \frac{2}{3} \text{ = } \frac{40.27.5}{21} = 192.5 \text{ cm}^3

iv. (a) 2

Solution:
Number of scoops required to fill tope cone

\[
\begin{array}{c}
\text{Volume of a cone} & \frac{192.5}{80.83} & \frac{2}{2}.14 \approx 2

\text{ V, (b) 39}

Solution:

Number of cones that can be filled using the;
\text{Whole brick} & \text{Volume of brick} \\ \text{Volume of lone} \\
\frac{2700}{192.5} & = 38.960 \approx 39

\text{Assertion Reason Answer-}

(c) A is true but R is false.

(a) 8 oth A and R are true and R is the correct explanation of A.

$$= \frac{\text{Volume of a cone}}{\text{Volume of a scoop}} = \frac{192.5}{89.83} = 2.14 \approx 2$$

Whole brick
$$= \frac{\text{Volume of brick}}{\text{Volume of l cone}}$$

$$=\frac{7500}{192.5}=38.960\approx 39$$