

Quadratic Equations

Introduction to Quadratic equation

If p(x) is a quadratic polynomial, then p(x) = 0 is called a quadratic equation.

The general or standard form of a quadratic equation, in the variable x, is given by ax^2 bx + c = 0, where a, b, c are real numbers and a $\neq 0$.

Roots of the quadratic equation

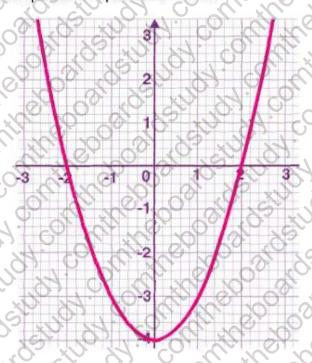
The value of x that satisfies an equation is called the zeroes or roots of the equation

A real number α is said to be a solution/root of the quadratic equation $ax^2 + bx + c = 0$ $a\alpha^2 + b\alpha + c = 0$.

A quadratic equation has at most two roots,

Graphically, the roots of a quadratic equation are the points where the graph of the quadratic polynomial cuts the x-axis.

Consider the graph of a quadratic equation x2



Graph of a Quadratic Equation

In the above figure, -2 and 2 are the roots of the quadratic equation x2

Note:

"YEILIG!

- If the graph of the quadratic polynomial cuts the x-axis at two distinct points, then it has real and distinct roots.
- If the graph of the quadratic polynomial touches the x-axis, then it has real and equal roots. I'M' COMITTE DO SILL TI COUNTHE POST ACHINAY.COM mardstud wahoardst

ardstud

QUADRATIC EQUATIONS MATHEMATICS

If the graph of the quadratic polynomial does not cut or touch the x-axis then it does not have any real roots.

The standard form of a Quadratic Equation

The standard form of a quadratic equation is $ax^2 + bx + c = 0$, where a, b and c are real numbers and $a \neq 0$

'a' is the coefficient of x2. It is called the quadratic coefficient. 'b' is the coefficient of x It is called the linear coefficient. 'c' is the constant term.

- A quadratic equation can be solved by following algebraic methods:
 - i. Splitting the middle term (factorization
 - ii. Completing squares
 - iii. Quadratic formula
- Splitting the middle term (or factorization) method
 - If $ax^2 + bx + c$, $a \ne 0$, can be reduced to the product of two linear factors, then the roots of the quadratic equation $ax^2 + bx + c = 0$ can be found by equating each factor to zero.
 - Steps involved in solving quadratic equation $ax^2 + bx + c = 0$ (a \neq 0) by splitting the middle term (or factorization) method:
 - Step 1: Find the product ac.
 - Step 2: Find the factors of 'ac' that add to up to b, using the following criteria:
 - i. If ac > 0 and b > 0, then both the factors are positive.
 - If ac > 0 and b < 0, then both the factors are negative.
 - iii. If ac < 0 and b > 0, then larger factor is positive and smaller factor is negative.
 - iv. If ac < 0 and b < 0, then larger factor is negative and smaller factor is positive.
 - Step 3: Split the middle term into two parts using the factors obtained in the above step.
 - Step 4: Factorize the quadratic equation obtained in the above step by grouping method. Two factors will be obtained.
 - Step 5: Equate each of the linear factors to zero to get the value of x.

Completing the square method

- Any quadratic equation can be converted to the form $(x + a)^2 b^2 = 0$ or $(x a)^2 + b^2 = 0$ b2 = 0 by adding and subtracting the constant term. This method of finding the roots of quadratic equation is called the method of completing the square.
- The steps involved in solving a quadratic equation by completing the square, are III COMINEDO ar contineboo Jehldy Comil as follows: ard study of mardstud
 - rahoardst Step 1: Make the coefficient of x2 unity

Step 2: Express the coefficient of x in the form $2 \times x \times p$.

Step 3: Add and subtract the square of p.

Step 4: Use the square identity $(a + b)^2$ or $(a - b)^2$ to obtain the quadratic equation in the required form $(x + a)^2 - b^2 = 0$ or $(x - a)^2 + b^2 = 0$.

Step 5: Take the constant term to the other side of the equation.

Step 6: Take the square root on both the sides of the obtained equation to get the roots of the given quadratic equation.

Quadratic formula

The roots of a quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$) can be calculated by using the quadratic formula:

$$\frac{-b+\sqrt{b^2-4ac}}{2a}$$
 and $\frac{-b-\sqrt{b^2-4ac}}{2a}$ where $b^2-4ac \ge 0$

If b2 - 4ac < 0, then equation does not have real roots

The quadratic formula is used to find the roots of a quadratic equation. This formula helps to evaluate the solution of quadratic equations replacing the factorization method. If a quadratic equation does not contain real roots, then the quadratic formula helps to find the imaginary roots of that equation. The quadratic formula is also known as Shreedhara Acharya's formula. In this article, you will learn the quadratic formula, derivation and proof of the quadratic formula, along with a video lesson and solved examples.

An algebraic expression of degree 2 is called the quadratic equation. The general form of a quadratic equation is $ax^2 + bx + c = 0$, where a, b and c are real numbers, also called "numeric coefficients" and $a \neq 0$. Here, x is an unknown variable for which we need to find the solution. We know that the quadratic formula used to find the solutions (or roots) of the quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
ants (real numbers)
i.e. variable
mula can also be written as:
$$\frac{2 - 4ac}{4a^2}$$

I will contine boards!

Here

a, b, c = Constants (real numbers)

x = Unknown, i.e. variable

The above formula can also be written as:

$$x = \frac{-b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x = \frac{-b}{2a} \pm \sqrt{(\frac{b}{2a})^2 - \frac{c}{a}}$$

What is the Quadratic Formula used for?

The quadratic formula is used to find the roots of a quadratic equation and these roots are called the solutions of the quadratic equation. However, there are several methods of solving quadratic equations such as factoring, completing the square, graphing, etc.

Roots of Quadratic Equation by Quadratic Formula

We know that a second-degree polynomial will have at most two zeros, and therefore a quadratic equation will have at most two roots.

In general, if α is a root of the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$; then, $a\alpha^2 + b\alpha +$ c = 0. We can also say that $x = \alpha$ is a solution of the quadratic equation or α satisfies the equation, $ax^2 + bx + c = 0$.

Note: Roots of the quadratic equation ax2 + bx + c = 0 are the same as zeros of the polynomial ax2 + bx + c.

One of the easiest ways to find the roots of a quadratic equation is to apply the quadratic formula.

Quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here, b2 - 4ac is called the discriminant and is denoted by D.

The sign of plus (+) and minus (-) in the quadratic formula represents that there are two solutions for quadratic equations and are called the roots of the quadratic equation.

Root 1:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

We can derive the quadratic formula in different ways using various techniques.

Derivation Using Completing the Square Technique

Let us write the standard form of a quadratic equation $ax^2 + bx + c = 0$ A Style Hilly Contine post destudy Jehidy. Contheboardst I'M' COULTHE POSIDE

mardstudy.com nahoardstud

$$ax^2 + bx + c = 0$$

Divide the equation by the coefficient of x2, i.e., a.

$$x^2 + (b/a)x + (c/a) = 0$$

Subtract c/a from both sides of this equation

$$x^2 + (b/a) x = -c/a$$

Now, apply the method of completing the square.

Add a constant to both sides of the equation to make the LHS of the equation as complete square.

Adding (b/2a)2 on both sides,

$$x^2 + (b/a)x + (b/2a)^2 = (-c/a) + (b/2a)^2$$

Using the identity $a^2 + 2ab + b^2 = (a + b)^2$

$$[x + (b/2a)]^2 = (-c/a) + (b^2/4a^2)$$

$$[x + (b/2a)]2 = (b2 - 4ac)/4a2$$

Take the square root on both sides

Shortcut Method of Derivation

Write the standard form of a quadratic equation

$$ax^2 + bx + c = 0$$

Multiply both sides of the equation by 4a.

$$4a (ax^2 + bx + c) = 4a(0)$$

$$4a^2x^2 + 4abx + 4ac = 0$$

$$4a^2x^2 + 4abx = -4ac$$

will become a complete square. Add a constant on sides such that LHS

Adding b2 on both sides,

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

$$(2ax)^2 + 2(2ax)(b) + b^2 = b^2 - 4ac$$

Using algebraic identity $a^2 + 2ab + b^2$

$$(2ax + b)^2 = b^2 - 4ac$$

Taking square root on both sides,

$$2ax + b = \pm \sqrt{(b^2 - 4ac)}$$

$$2ax = -b \pm \sqrt{(b^2 - 4ac)}$$

$$x = [-b \pm v(b2 - 4ac)]/2a$$

9. Nature of Roots

63-4. In the board of the state 4ac, the roots of a quadratic equation I.A. COMINEDO Ardet Based on the value of the discriminant, D = b ACHINAY.COMIN mineboards hahoardstu roardstudy and study.cc

QUADRATIC EQUATIONS

Case 1: If D>0, the equation has two distinct real roots.

Case 2: If D=0, the equation has two equal real roots.

Case 3: If D<0, the equation has no real roots.

The number of roots of a polynomial equation is equal to its degree. So, a quadratic equation has two roots. Some methods for finding the roots are:

Factorization method

Quadratic Formula

Completing the square method

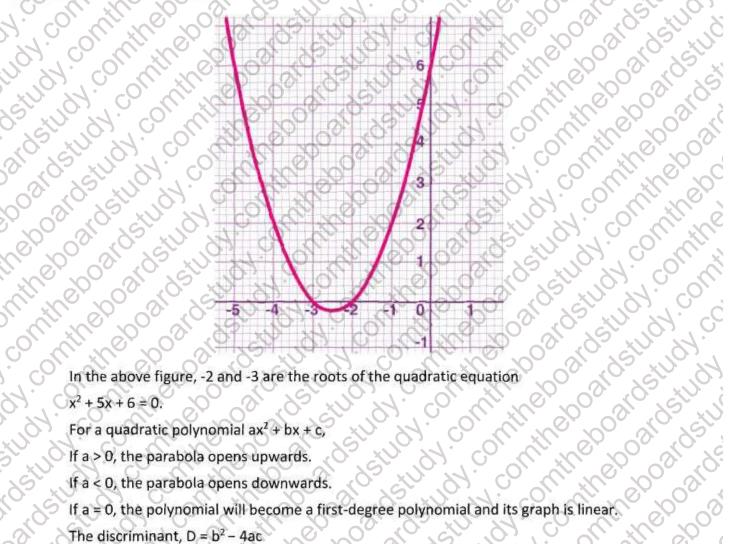
All the quadratic equations with real roots can be factorized. The physical significance of the roots is that at the roots of an equation, the graph of the equation intersects x-axis. The x-axis represents the real line in the Cartesian plane. This means that if the equation has unreal roots, it won't intersect x-axis and hence it cannot be written in factorized form. Let us now go ahead and learn how to determine whether a quadratic equation will have real roots or not.

97 cour	Nature	Of Roots C	of Quadra	tic Equ	ation	gendy.
311094.0	onthing	Value of Discriminant	Nature of Roots		46000	310,05111
92 MIN 93	00	D>0	Real Dist	tinct Rational	THE ST	100319
1, 49, 21, 9	7. 60 4	ir illo bo	square	roots		87,000
100 MO 181	19470	ou file so	D is not a perfect square	Irrational roots	CO, Wir	16,000
Mo Willy	(0)	D=0	Real Equal		0 0	10,00
(St. 100 St. 5	Silvio	D < 0	Complex, Distinct (A pair of complex conjugates)		94.00	on the
The special states of the stat	10° 6'19	1911 ic 94	ill oo	0, 600	Elino 94.	COLINIT

itheboards ortheboard 10. Graphical Representation of a Quadratic Equation

Journal Still M. Columbia Stil A Style Hild A COUNTY SOUND SIGN AND STANK SOUND SIGN AND STANK SOUND SIGN AND STANK SOUND SIGN AND STANK SOUND SIGN AND SOUND The graph of a quadratic polynomial is a parabola. The roots of a quadratic equation are the points where the parabola cuts the x-axis i.e. the points where the value of the waku si qefildi. Ohlikeboot A COUNTREPOSITORING CON · Milhelpoarde flidy contined Cunike boardstudy. comits. quadratic polynomial is zero. And contine boards tudy!

i, defindy confine boardeful Now, the graph of $x^2 + 5x + 6 = 0$ is: - Ardeludy contine boat ahnardstudy.comthet

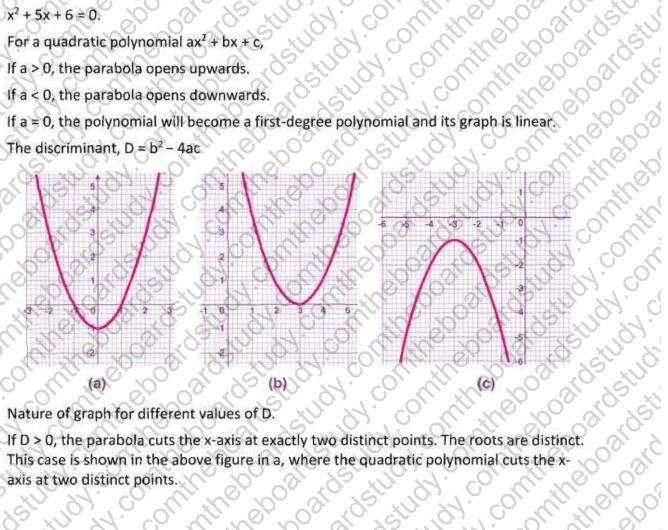


Judy contine boards

Contineposide y.comineboardsti

$$x^2 + 5x + 6 = 0$$

The discriminant, $D = b^2 - 4ac$



" COUNTHE POSIC I'M' COMITAE nahoaids mardstu 46,1194.00 ardstudi

If D = 0, the parabola just touches the x-axis at one point and the rest of the parabola lies above or below the x-axis. In this case, the roots are equal.

This case is shown in the above figure in b, where the quadratic polynomial touches the x-axis at only one point.

If D < 0, the parabola lies entirely above or below the x-axis and there is no point of contact with the x-axis. In this case, there are no real roots.

This case is shown in the above figure in c, where the quadratic polynomial neither cuts nor touch the x-axis.

Discriminant of a quadratic equation

For the quadratic equation $ax^2 + bx + c = 0$, a ≠ 0, the expression b2 4ac is known as discriminant.

- 12. Nature of the roots of a quadratic equation:
 - i. If b2 4ac > 0, the quadratic equation has two distinct real roots
 - ii. If b2 4ac = 0, the quadratic equation has two equal real roots.
 - iii. If b2 4ac < 0, the quadratic equation has no real roots.
- 13. There are many equations which are not in the quadratic form but can be reduced to the quadratic form by simplifications.

14. Application of quadratic equations

- The applications of quadratic equation can be utilized in solving real life problems.
- Following points can be helpful in solving word problems:
 - Every two digit number 'xy' where x is a ten's place and y is a unit's place can be expressed as xy = 10x + y
 - ii. Downstream: It means that the boat is running in the direction of the stream Upstream: It means that the boat is running in the opposite direction of the stream Thus, if Speed of boat in still water is x km/h

And the speed of stream is y km/h

And Contineboardst

"Helindy Contineboald

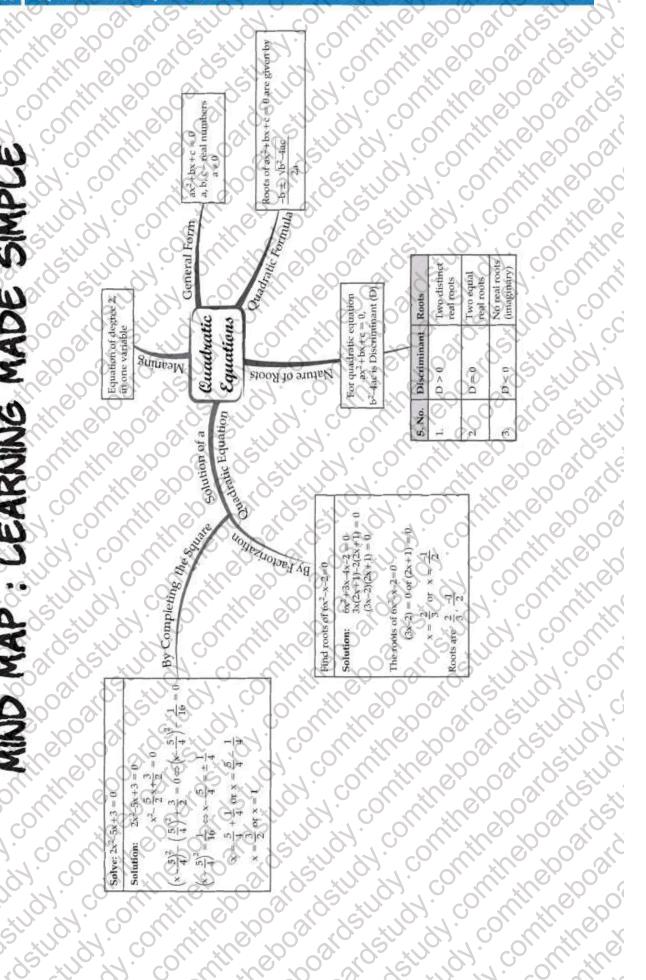
Then the speed of boat downstream will be (x + y) km/h and in upstream it will A. S. Colling A Survey of the boards. be (x - y) km/h.

in contineboard

Actual Contine boards tud iii. If a person takes x days to finish a work, then his one day's work = · Kahnardstudy.comthet anardstudy comine o -ardefuldy comitheboo mine hoardstudy.com neboardstudy.comit in coulties boards tud!

contheboards tudy!

MADE Q ing_A 000



COLL

FLEN,

100,91

FIIGH

- Important Questions

 Multiple Choice questions

 1. Which of the following is not

 (a) $x^2 + 2y$
- $x^{2} + x^{3} + 2 = 0$ (c) $3 + x + x^{2} = 0$ (d) $x^{2} 9 = 0$ (a) 0
- (b) 1 (c) 2 (d) 1 (a) 1) (b) 2 1) (c)
- MATHEMATICS QUADRATIC EQUATIONS

 Important Questions

 1. Which of the following is not a quadratic equation
 (a) $x^2 + 3x 5 = 0$ (b) $x^2 + 3x 5 = 0$ (c) $3 + x + x^2 = 0$ (d) $x^2 9 = 0$ 2. The quadratic equation has degree
 (a) 0
 (b) 1
 (c) 2
 (d) 3
 3. The cubic equation has degree
 (a) 1
 (b) 2
 (c) 3
 (d) 4
 4. A bi-quadratic equation has degree
 (a) 1
 (b) 2
 (c) 3
 (d) 4
 5. The polynomial equation $x(y+1) \neq 8 = (x+2)(x-2)$ is
 (a) linear equation
 (b) quadratic equation
 (b) quadratic equation
 (c) quadratic equation
 (d) quadratic equation
 (e) quadratic equation
 (f) quadratic equation Tille Do ard study contine boards tudy contine

 - 3hn Ardstud

#Wen,

700,9

- f + 1 = 2x 3 is aadratic equation
 (c) cubic equation
 (d) bi-quadratic equation
 7. The quadratic equation
 (a) $2x^2 + x 1 = 0$ (b) $2x^2 1$ W. Columbia of the property of
- $(b) 2x^{2} x 1 = 0$ $(c) 2x^{2} + x 1 = 0$
- (a) $x^2 7x + 5 = 0$ (b) $x^2 + 7y$
- (c) cubic equation
 (d) bi-quadratic equation
 6. The equation $(x-2)^2+1=2x-3$ is a
 (a) linear equation
 (b) quadratic equation
 (c) cubic equation
 (d) bi-quadratic equation
 7. The quadratic equation
 7. The quadratic equation whose roots are 1 and
 (a) $2x^3+x-3=0$ (b) $2x^2-x+1=0$ (c) $2x^2+x+1=0$ (d) $2x^2-x+1=0$ 8. The quadratic equation whose one rational root is $3+\sqrt{2}$ is
 (a) $x^2-7x+5=0$ (b) $x^2+7x+5=0$ (c) $x^2-7x+5=0$ (d) $x^2-7x+6=0$ (d) $x^2-7x+6=0$ (e) $x^2-7x+6=0$ (f) $x^2-7x+6=0$ (g) $x^2-7x+6=0$ (g) $x^2-7x+6=0$ (h) $x^2-7x+6=0$ (g) $x^2-7x+6=0$ (g) $x^2-7x+6=0$ (g) $x^2-7x+6=0$ (h) $x^2-7x+6=0$ IED GIN SINGLY CORNING OR THE BOOK OF THE
- (c) -3

(d) 2

ery Short Questions

- What will be the nature of roots of quadratic equation 2x2
- is a root of the equation $x^2 + kx 54 = 0$, then find the value of k
- If $ax^2 + bx + c = 0$ has equal roots, find the value of c.
- If a and b are the roots of the equation $x^2 + ax b = 0$, then find a and b
- Show that x = -2 is a solution of $3x^2 + 13x + 14 = 0$.
- Find the discriminant of the quadratic equation $4\sqrt{2}x^2 + 8x + 2\sqrt{2} = 0$
- +k²0 has arids indiv State whether the equation (x + 1)(x - 2) + x = 0 has two distinct real roots or not. Justify your answer.
- Is 0.3 a root of the equation $x^2 0.9 = 0$? Justify.
- For what value of k, is 3 a root of the equation $2x^2 + x + k = 0$?
- 3kx Find the values of k for which the quadratic equation 9x equal roots.

Short Questions

Find the roots of the following quadratic equations by factorisation

(i)
$$\sqrt{2x^2 + 7x + 5} = 0$$
 (ii) $2x^2 - x + \frac{1}{8} = 0$

P.O.2. by the Find the roots of the following quadratic equations, if they exist, method of completing the square

(i)
$$2x^2 + x - 4 = 0$$

(ii)
$$4x^2 + 4\sqrt{3}x + 3 = 0$$

Find the roots of the following quadratic equations by applying the quadratic formula.

(i) $2x^2 - 7x + 3 = 0$ (ii) $4x^2 + 4x^2$ Ardeflidy. Contine boards filld Jehildy. Comine boards tul

', cominapoard

(i)
$$2x^2 - 7x + 3 = 0$$

(ii)
$$4x^2 + 4\sqrt{3}x + 3 = 0$$

Using quadratic formula solve the following quadratic equation: Countyleposi mineboards rahoardstuż mardstudy

$$p^2x^2 + (p^2 - q^2)x - q^2 = 0$$

Heilid

ardstil

Find the roots of the following equation:

$$\frac{1}{x+3} - \frac{1}{x-6} = \frac{9}{20}; \ x \neq -3, 6$$

Find the nature of the roots of the following quadratic

(i)
$$3x^2 - 4\sqrt{3}x + 4 = 0$$
) (ii) $2x^2 - 6x + 3 = 0$

(i)
$$2x^2 + kx + 3 = 0$$

(ii)
$$kx(x-2)+6=0$$

- If the roots of the quadratic equation $(a-b) x^2 + (b-c) x + (c-a) = 0$ are equal, prove that 2a = b + c.

 If the equation $(1 + m^2)x^2 + 2mcx + c^2 a^2 = 0$ has equal roots, show $x^2 + x^2 + x^2$

Long Questions

Using quadratic formula, solve the following equation for x:

$$abx^{2} + (b^{2} - ac)x - bc = 0$$

$$(2p+1)x^2-(7p+2)x+(7p-3)=0$$
 has equal roots. Also find these roots.

Solve for

ahnardst

$$x: \frac{x-4}{x-5} + \frac{x-6}{x-7} = \frac{10}{3}: x \neq 5,7$$

HIIM CON

'Yeillay!

AN CORNIE

-g equation for x:

 g the value of p for which the quadratic equation $(2p+1)x^2-(7p+2)x+(7p-3)=0 \text{ has equal roots. Also find these roots.}$ Solve for $(x-4)x^2+x-6=10/3; x\neq 5,7$ The sum of the
- The sum of the reciprocals of Rehman's age (in years) 3 years ago and 5 years from now is Find his present age.

 The difference of two natural numbers is 5 and the difference of two natural numbers.

 The sum of the squarer of the squares of two consecutive odd numbers is 394. Find the I.A. COMINEDO AI dest
- 6. The sum mineboai contine of nahoarde mardstu ardstudy ACHINIAN.CO ardstudi

numbers.

- The sum of two numbers is 15 and the sum of their reciprocals is 3. Find the numbers.
- In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210. Find her marks in the two subjects.
- A train travels 360 km at a uniform speed. If the speed has been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the
- The sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares

Case Study Question:

- The board in the continuous and a standard in the continuous and a ious bulling book of the state 1. If p(x) is a quadratic polynomial i.e., $p(x) = ax^2 + bx + c$, $a \ne 0$ a $\ne 0$ then p(x) = 0 is called a quadratic equation. Now, answer the following questions. Siring Odlory Francisco State of the State o
 - Which of the following is correct about the quadratic equation ax2 on the boards and study. On the boards
 - a, b and c are real numbers C ≠ I
 - Atheboards tudy con b. a, b and c are rational numbers, $a \neq 0$
 - a, b and c are integers, a, band $\mathbf{C} \neq \mathbf{0}$
 - d. a, b and c are real numbers $a \neq 0$
 - The degree of a quadratic equation is:

 - d. Other than 1
 - Which of the following is a quadratic equation?
 - a. x(x + 3) + 7 = 5x 11
 - b. $(x+1)^2 9 = (x-4)(x+3)$
 - C. $x^2(2x + 1) 4 = 5x^2 10$
 - d. x(x-1)(x+7) = x(6x-9)
 - itheboardstudy.comineb le postugating A court Which of the following is incorrect about the quadratic equation $ax^2 + bx + c = 0$?
 - a. If $a\alpha^2 + b\alpha + c = 0$ then $x = -\alpha$ is the solution of the given quadratic equation.
 - b. The additive inverse of zeroes of the polynomial $ax^2 + bx + c$ is the roots of the given equation. " withe poo mineboal hahoaid! roardsti. "I'M' COM ardstud 16HIDY.C contine *A COULT

Hillippoards High Continuos

- C. If α is a root of the given quadratic equation, then its other root is -α
- d. All of these.
- Which of the following is not a method of finding solutions of the given quadratic equation
 - a. Factorisation method
 - b. Completing the square method
 - C. Formula method
 - d. None of these
- Quadratic equations started around 3000 B.C. with the Babylonians. They were one of the world's first civilisation, and came up with some great ideas like agriculture, irrigation and writing. There were many reasons why Babylonians needed to solve quadratic equations, for example to know what amount of crop you can grow on the square field. Based on the above information, represent the following questions in the form of quadratic equation.
 - The sum of squares of two consecutive integers is 650

a.
$$x^2 + 2x - 650 = 0$$

b.
$$2x^2 + 2x - 649 = 0$$

C.
$$x^2 - 2x - 650 = 0$$

$$d. 2x^2 + 6x - 550 = 0$$

The sum of two numbers is 15 and the sum of their reciprocals is 310310

a.
$$x^2 + 10x - 150 = 0$$

b.
$$15x^2 - x + 150 = 0$$

C.
$$x^2 - 15x + 50 = 0$$

d.
$$3x^2 - 10x + 15 = 0$$

Two numbers differ by 3 and their product is 504

a.
$$3x^2 - 504 = 0$$

b.
$$x^2 - 504x + 3 = 0$$

C.
$$504x^2 + 3 = x$$

$$d. x^2 + 3x - 504 = 0$$

A natural number whose square diminished by 84

ard study coming of

" coulthepog

and study comits

hahoardstudi

a.
$$x^2 + 8x - 84 = 0$$

b.
$$3x^2 - 84x + 3 = 0$$

C.
$$x^2 - 3x - 108 = 0$$

d.
$$x^2 - 11x + 60 = 0$$

Jehldy. Comineboards! A natural number when increased by 12, equals 160 times its reciprocal

a.
$$x^2 - 12x + 160 = 0$$

b.
$$x^2 - 160x + 12 = 0$$

C.
$$12x^2 - x - 160 = 0$$

d.
$$x^2 + 12x - 160 = 0$$

Assertion Reason Questions-

- Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

 Both A and R are true and D

 - Both A and R are true and R is the correct explanation for A.
 - A is true but R is false.
 - A is false but R is true.

- Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

 Both A and R are true and R is the correct explanation.
 - a. Both A and R are true and R is the correct explanation for A.
 - b. Both A and R are true and R is the correct explanation for A.
 - A is true but R is false.
 - d. A is false but R is true.

Assertion: The roots of the quadratic equation $x^2 + 2x + 2 = 0$ are imaginary

The roots of the quadratic equation x2 + 2x + 2 = 0 are imaginary.

Reason: If discriminant D = b2 - 4ac < 0 then the roots of the quadratic equation ax2 + bx + c = 0 are imaginary. Onthe boards tudy contine to a restrict the boards tudy. On the boards tudy contine to a restrict to the boards tudy. On the boards tudy contine to a restrict to the boards tudy. THE DO STOSTUDY. COUNTRE DO STOSTUDINE DO ST dinating, could be addition of the boards and the boards are the boards and the boards and the boards are the boards are the boards are the boards and the boards are the b Judinaridating A. Collins in Strateging A. Collins in the Position of Strategi Jacking County of the post of Nego ard study. Cornthe boards tudy. Cornthe An coult be boards from the bo LINY CORRING ON CORRESPONDENCE OF THE PROPERTY OF THE PROPERTY

$$x^2 + kx - \frac{5}{4} = 0$$

MATHEMATICS QUADRATIC EQUATIONS

Answer Key-
Multiple Choice questions

1. (b) -10

2. (b)
$$x^2 + x^2 + 2 = 0$$

3. (c) 2

4. (c) 3

5. (d) 4

6. (a) linear equation

7. (b) quadratic equation

8. (b) $2x^2 - x - 1 = 0$

9. (d) $x^2 - 6x + 7 = 0$

10. (d) $42v6$

11. (c) -3

Very Short Answer:

1. $0 \ge b^2 - 4ac$
 $\Rightarrow 42 - 4 \times 2 (7)$
 $\Rightarrow 16 + 36 = 72 \ge 0$

Hence, roots of quadratic equation are real and unequal.

2. $\frac{1}{2}$ is a root of quadratic equation.

 $\frac{x}{2} + \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$
 $\frac{1}{2} = 0$

$$\frac{1+2k-5}{4} = 0 \qquad \Rightarrow \qquad 2k-4 = 0$$

i.e.,
$$b2 - 4ac = 0$$

$$\Rightarrow$$
 b2 = 4 ac

$$\Rightarrow c = \frac{b^2}{4a}$$

MATHEMATICS QUADRATIC EQUATIONS

i.e., b2 – 4ac = 0.

$$\Rightarrow b2 = 4 \text{ ac}.$$

$$\Rightarrow c = \frac{p^n}{4n}$$
4. Sum of the roots = $a + b = -\frac{a}{A} = -a$

Product of the roots = $a + b = -\frac{a}{A} = -b$

$$= a + b = -a \text{ and } ab = -b$$

$$\Rightarrow 2a = -b \text{ and } a = -1$$

$$\Rightarrow b = 2 \text{ and } a = -1$$
5. Put the value of x in the quadratic equation
$$\Rightarrow \text{ UHS} = 3y^2 + 13y + 14$$

$$\Rightarrow 3(-2)^2 + 13(-2) + 14$$

$$\Rightarrow 12 - 26 + 14 = 0$$

$$\Rightarrow \text{RHS Hence}, x = 2 \text{ is a solution}.$$
6. D = 62 – 4ac = (8)² – 4(4y2)[2y2]
$$\Rightarrow 64 - 56 = 0$$
7. $(x + 1)(x - 2) + x = 0$

$$\Rightarrow x^2 - x = 2 + x = 0$$

$$\Rightarrow x^2 - x = 2 + x = 0$$

$$\Rightarrow x^2 - x = 2 + x = 0$$

$$\Rightarrow (4(1)(-2) = 8 > 0)$$

$$\therefore \text{ Given equation has two distinct real roots}.$$
8. $\Rightarrow 0.3 \text{ is a root of the equation } x^2 - 0.9 = 0$

$$\therefore x^2 - 0.9 = (0.3)^2 - 0.9 = 0.09 - 0.9 \neq 0$$
Hence, 0.3 is not a root of given equation:
9. 3 is a root of $2x^2 + x + k = 0$, when

Product of the roots =
$$ab = \frac{B}{A} = -b$$

$$= a + b = -a$$
 and $ab = -b$

$$\Rightarrow$$
 2a = -b and a = -1

$$\Rightarrow$$
 b = 2 and a = -1

$$\Rightarrow$$
 LHS = $3x^2 + 13x + 14$

$$\Rightarrow$$
 3(-2)² + 13(-2) + 14

$$\Rightarrow$$
 12 - 26 + 14 = 0

$$\Rightarrow$$
 RHS Hence, $x = -2$ is a solution

6.
$$D = 62 - 4ac = (8)^2 - 4(4\sqrt{2})(2\sqrt{2})$$

$$\Rightarrow 64 - 64 = 0$$

7.
$$(x+1)(x-2)+x=0$$

$$\Rightarrow x^2 - x - 2 + x = 0$$

$$\Rightarrow$$
 $x^2 - 2 = 0$

$$D = b^2 - 4ac$$

$$\Rightarrow$$
 (-4(1)(-2) = 8 > 0

8.
$$\therefore$$
 0.3 is a root of the equation $x^2 - 0.9 = 0$

$$x^2 - 0.9 = (0.3)^2 - 0.9 = 0.09 - 0.9 \neq 0$$

9. 3 is a root of
$$2x^2 + x + k = 0$$
, when

$$\Rightarrow 2(3)^2 + 3 + k = 0$$

$$\Rightarrow$$
 18 + 3 + k = 0

$$\Rightarrow k = -21$$

$$D = 0$$

$$\Rightarrow$$
 b² - 4ac = 0

$$\Rightarrow$$
 $(-3k)^2 - 4 \times 9 \times k = 0$

$$\Rightarrow$$
 9k² = 36k

$$\Rightarrow k = 4$$

MATHEMATICS QUADRATIC EQUATIONS

⇒
$$2(3)^2 + 3 + k = 0$$

⇒ $18 + 3 + k = 0$

⇒ $k = -21$

10. For equal roots:

$$0 = 0$$

⇒ $b^2 - 4ac = 0$

⇒ $(-3k)^2 - 4 \times 9 \times k = 0$

⇒ $9k^2 = 36k$

⇒ $k = 4$

Short Answer:

1. (i) We have, $\sqrt{2x^2} + 7x + 5\sqrt{2} = 0$

$$= \sqrt{2x^2} + 5x + 2x + 5\sqrt{2} = 0$$

$$x(\sqrt{2x} + 5) + \sqrt{2}(\sqrt{2x} + 5) = 0$$

$$= (\sqrt{2x} + 5)(x + \sqrt{2}) = 0$$
∴ Either $\sqrt{2x} + 5 = 0$ or $x + \sqrt{2} = 0$

$$= \sqrt{2x^2 + 5x + 2x + 5}\sqrt{2} = 0$$

$$x(\sqrt{2}x + 5) + \sqrt{2}(\sqrt{2}x + 5) = 0$$

$$=(\sqrt{2}x+5)(x+\sqrt{2})=0$$

: Either
$$\sqrt{2}x + 5 = 0$$
 or $x + \sqrt{2} = 0$

$$\therefore x = -\frac{5}{\sqrt{2}}$$
 or $x = -\sqrt{2}$

(ii) We have,
$$2x^2 - x + 18 = 0$$

MATHEMATICS QUADRATIC EQUATIONS

⇒ 2(3)² + 3 + k = 0

⇒ 18 + 3 + k = 0

⇒ k = 221

20. For equal roots:

$$0 = 0$$

⇒ $b^2 - 4ac = 0$

⇒ $t - 36b^2 - 4x = 0$

Hence, the roots are $t - \frac{5}{60}$ and $t - \frac{1}{2}$.

(ii) We have, $2x^2 - x + 18 = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t - \frac{16x^2 - 8x + 1}{8} = 0$

⇒ $t -$

$$\Rightarrow (4x-1)(4x-1)=0$$

So, either
$$4x - 1 = 0$$
 or $4x - 1 = 0$

$$x = \frac{1}{4}$$
 or $x = \frac{1}{4}$

2. (i) We have,
$$2x^2 + x - 4 = 0$$

MATHEMATICS QUADRATIC EQUATIONS

2. (i) We have,
$$2x^2 + x - 4 = 0$$

On dividing both sides by 2; we have

$$x^2 + \frac{x}{2} = 2 = 0$$

$$\Rightarrow x^2 + \frac{1}{2}x + \left(\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^2 = 2 = 0 \qquad \left[b - \frac{1}{2} \left(\text{coefficient of } x\right) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\right]$$

$$\Rightarrow \left(x + \frac{1}{4}\right)^3 - \frac{1}{16} - 2 = 0 \Rightarrow \left(x + \frac{1}{4}\right)^2 + \frac{1}{16} + 2 = \frac{1 + 32}{16} = \frac{33}{16} > 0$$

$$\Rightarrow \text{ Roots exist}$$

$$x + \frac{1}{4} = \pm \frac{\sqrt{33}}{36} \Rightarrow x + \frac{1}{4} = \pm \frac{\sqrt{33}}{4}$$

$$\Rightarrow x + \frac{1}{4} = \pm \frac{\sqrt{33}}{4} \text{ or } x = \frac{1}{4} + \frac{\sqrt{33}}{4}$$

$$\Rightarrow x = \frac{1}{4} + \frac{\sqrt{33}}{4} \text{ or } x = \frac{1}{4} + \frac{\sqrt{33}}{4}$$

$$\Rightarrow x = \frac{1}{4} + \frac{\sqrt{33}}{4} \text{ or } x = \frac{1}{4} + \frac{\sqrt{33}}{4}$$

$$\Rightarrow x = \frac{1}{4} + \frac{\sqrt{33}}{4} \text{ or } x = \frac{1}{4} + \frac{\sqrt{33}}{4}$$
Hence, roots of given equation are $\frac{\sqrt{33} + 1}{4}$ and $\frac{(\sqrt{33} + 1)}{4}$

(ii) We have, $4x^2 + 4\sqrt{3}x + 3 = 0$
On dividing both sides by 4, we have
$$x^2 + \sqrt{3}x + \frac{3}{4} = 0 \Rightarrow x^2 + \sqrt{3}x + \frac{\sqrt{3}}{2} = 0 \qquad (ii)$$

$$\Rightarrow x + \sqrt{3}x + \frac{3}{4} = 0 \Rightarrow x^2 + \sqrt{3}x + \frac{\sqrt{3}}{2} = 0 \qquad (iii)$$

$$\Rightarrow x + \sqrt{3}x + \frac{3}{4} = 0 \Rightarrow x^2 + \sqrt{3}x + \frac{\sqrt{3}}{2} = 0 \qquad (iv)$$

$$\Rightarrow Roots exist. ...(i) \Rightarrow x = -\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$$

If ence, roots of given equation are $-\frac{\sqrt{3}}{2}$ and $-\frac{\sqrt{3}}{2}$.

3. (i) We have, $2x^2 - 7x + 3 = 0$

Here, $a = 2$, $b = -7$ and $c = 3$

Therefore, $b = b + -4ac$

$$\Rightarrow \left(x + \frac{1}{4}\right)^2 - \frac{1}{16} - 2 = 0 \Rightarrow \left(x + \frac{1}{4}\right)^2 = \frac{1}{16} + 2 = \frac{1 + 32}{16} = \frac{33}{16} > 0$$

$$x + \frac{1}{4} = \pm \sqrt{\frac{33}{16}} \implies x + \frac{1}{4} = \pm \frac{\sqrt{33}}{4}$$

$$\Rightarrow x + \frac{1}{4} = \frac{\sqrt{33}}{4} \quad \text{or} \quad x + \frac{1}{4} = -\frac{\sqrt{33}}{4}$$

$$x = \frac{1}{4} + \frac{\sqrt{33}}{4}$$
 or $x = \frac{1}{4} - \frac{\sqrt{33}}{4}$

$$\Rightarrow x = \frac{\sqrt{33} - 1}{4} \qquad \text{or} \qquad x = \frac{-(\sqrt{33} + 1)}{4}$$

(ii) We have,
$$4x^2 + 4\sqrt{3}x + 3 = 0$$

$$x^{2} + \sqrt{3}x + \frac{3}{4} = 0$$
 \Rightarrow $x^{2} + \sqrt{3}x + \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2} + \frac{3}{4} = 0$

$$\Rightarrow \text{ Roots exist.} \quad \therefore (i) \qquad \Rightarrow \qquad x = -\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}$$

Here,
$$a = 2$$
, $b = -7$ and $c = 3$

Therefore,
$$D = b + -4ac$$

$$\Rightarrow$$
 D = $(-7)^2 - 4 \times 2 \times 3 = 49 - 24 = 25$

MATHEMATICS QUADRATIC EQUATIONS

$$\therefore D > 0, \forall \text{ toots exist.}$$

Thus,
$$x = \frac{-b \pm \sqrt{D}}{2a} + \frac{-(-7) \pm \sqrt{25}}{2 \times 2} + \frac{7 \pm 5}{4}.$$

$$x = \frac{7 + 5}{4} \text{ or } \frac{7 - 5}{4}$$

$$= 3 \text{ or } \frac{1}{2}.$$

So, the roots of given equation are 3 and $\frac{1}{2}$.

(ii) We have, $4x^2 + 4y 3x + 3 = 0$.

Here, $a = 4$, $b = 4y 3$ and $a = 3$.

Therefore, $D = b^2 - 4ac = (4y 3)2 - 4x + 4x + 3 = 48 - 48 = 0$.

$$\therefore D = 0$$
, roots exist and are equal.

Thus,
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-4\sqrt{3} \pm 0}{2x + 4} = \frac{-\sqrt{3}}{2}.$$

Hence, the roots of given equation are $\frac{-\sqrt{3}}{2}$ and $\frac{-\sqrt{3}}{2}$.

4. We have, $p^2 x^2 \pm (p^2 - q^2)x - q^2 = 0$.

Comparing this equation with $ax^2 + bx + c = 0$, we have $a = p^3$, $b = p^2 - q^2$ and $c = -q^2$.

$$\therefore D = b^2 - 4ac$$

$$\Rightarrow (p^2 - q^2)^2 - 4x + c^2x \cdot (-q^2)$$

$$\Rightarrow (p^2 + q^2)^2 + 4p^2q^2$$

$$x = \frac{7+5}{4} \quad \text{or} \quad \frac{7-5}{4}$$

$$= 3 \quad \text{or} \quad \frac{1}{2}$$

(ii) We have,
$$4x^2 + 4\sqrt{3}x + 3 = 0$$

Here,
$$a = 4$$
, $b = 4\sqrt{3}$ and $c = 3$

Therefore,
$$D = b^2 - 4ac = (4\sqrt{3})2 - 4 \times 4 \times 3 = 48 - 48 = 0$$

Thus,
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-4\sqrt{3} \pm 0}{2 \times 4} = \frac{-\sqrt{3}}{2}$$

4. We have,
$$p^2x^2 + (p^2 - q^2)x - q^2 = 0$$

$$a = p^2$$
, $b = p^2 - q^2$ and $c = -q^2$

$$D = b^2 - 4ac$$

$$\Rightarrow (p^2 - q)^2 - 4 \times p^2 \times (-q^2)$$

$$\Rightarrow (p^2 + q^2)^2 + 4p^2q^2$$

$$\Rightarrow (p^2 + q^3)2 > 0$$

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(p^2 - q^2) + (p^2 + q^2)}{2p^2} = \frac{2q^2}{2p^2} = \frac{q^2}{p^2}$$

and
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(p^2 - q^2) - (p^2 + q^2)}{2p^2} = \frac{-2p^2}{2p^2} = -1$$

Given,
$$\frac{1}{x+3}$$
, $\frac{1}{x-6} = \frac{9}{20}$; $x \neq -3$, 6

$$(x-6)-(x+3) = \frac{9}{20}$$

$$(x+3)(x-6) = \frac{9}{20}$$

$$\Rightarrow$$
 (x + 3) (x - 6)

$$\Rightarrow$$
 -20 or $x^2 - 3x + 2 = 0$

$$\Rightarrow$$
 x² - 2x -x + 2 = 0

$$\Rightarrow x(x-2)-1(x-2)=0$$

$$\Rightarrow$$
 $(x-1)(x-2)=0$

$$\Rightarrow$$
 x = 1 or x = 2

 $(x - 6) = \frac{9}{20}$ $(x - 6) = \frac{9}{20}$ $(x + 3)(x - 6) = \frac{9}{20}$ (x + 3)(x - 6) $\frac{q^{\frac{n}{2}} + (p^{\frac{n}{2}} + q^{\frac{n}{2}})}{2p^{\frac{n}{2}}} = \frac{2q^{\frac{n}{2}}}{p^{\frac{n}{2}}}$ $\frac{\sqrt{D}}{2a} = \frac{(p^{n} - q^{n}) - (p^{\frac{n}{2}} + q^{n})}{2p^{\frac{n}{2}}} = \frac{2p^{n}}{2p^{\frac{n}{2}}} = -1$.ence, roots are $\frac{q^{n}}{p^{\frac{n}{2}}}$ and -1.

5.

Given, $\frac{1}{x + 3} \cdot \frac{1}{x - b} = \frac{9}{20}$; $x \neq -3$, δ $\Rightarrow \frac{(x - 6) - (x + 3)}{(x + 3)(x - 6)} = \frac{9}{20}$ $\Rightarrow (x + 3)(x - 6)$ $\Rightarrow 20 \text{ or } x^{2} - 3x + 2 = 0$ $\Rightarrow x^{2} - 2x - x + 2 = 0$ $\Rightarrow x(x - 2) - 1(x - 2) = 0$ $\Rightarrow (x - 1)(x - 2) = 0$ $\Rightarrow x = 1 \text{ or } x^{2}$ Both xsolow
6. (x-2)=0 $\Rightarrow x=1 \text{ or } x=2$ Both x=1 and x=2 are satisfying the given equation. Hence, x=1,2 are the solutions of the equation.

6. (i) We have, $3x^2-4\sqrt{3}x+4=1$ Here, a=3, $b=-4\sqrt{3}$ and c=4Therefore, $0=b^2-4ac$ $\Rightarrow (-4\sqrt{3})^2-4x \cdot 3 \cdot x \cdot 4$ $\Rightarrow 48 \cdot 48 = 0$ Hence, the given quadratic equation has real anti-

6. (i) We have,
$$3x^2 - 4\sqrt{3}x + 4 = 1$$

Here,
$$a = 3$$
, $b = -4\sqrt{3}$ and $c = 4$

$$D = b^2 - 4ac$$

$$\Rightarrow (-4\sqrt{3})^2 - 4 \times 3 \times 4$$

$$\Rightarrow$$
 48 $-$ 48 $=$ 0

Thus,
$$x = -b \pm \sqrt{D} = -(-4\sqrt{3}) \pm \sqrt{0} = \frac{2\sqrt{3}}{3}$$

Len,

(ii) We have,
$$2x^2 - 6x + 3 = 0$$

Here,
$$a = 2$$
, $b = -6$, $c = 3$

Therefore,
$$D = b^2 - 4ac$$

$$= (-6)2.4 \times 2 \times 3 = 36 - 24 = 12 > 0$$

Thus,
$$x = \frac{b \pm \sqrt{D}}{2a} = \frac{-(-4\sqrt{3}) \pm \sqrt{6}}{2 \times 3} = \frac{2\sqrt{3}}{3}$$

If ence, equal rooss of given equation are $\frac{2\sqrt{3}}{3} \cdot \frac{2\sqrt{3}}{3}$.

(ii) We have, $2x^2 - 6x \pm 3 = 0$.

Here, $a = 2$, $b = -6$, $b = 3$.

Therefore, $D = b^2 - 4ac$.

$$= (-6)2 4 \times 2 \times 3 = 36 - 24 = 12 \times 0$$

Hence, given quadratic equation has real and distinct roots,

$$Thus, \quad x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-6) \pm \sqrt{12}}{2x + 2} = \frac{6 \pm 2\sqrt{3}}{4} \times \frac{8 \pm \sqrt{3}}{2}$$

Hence, roots of given equation are $\frac{3 + \sqrt{3}}{2}$ and $\frac{3 - \sqrt{3}}{2}$.

7. (i) We have, $2x^2 + 8x + 3 = 0$

Here, $a = 2$, $b = 4$, $c = 3$

$$b = b^2 + 4ac = k^2 - 4 \times 2 \times 3 = k^2 - 24$$
 For equal roots

$$D = 0$$

i.e., $k^2 - 24 = 0$

$$\Rightarrow k^2 = 24$$

$$\Rightarrow k = \pm \sqrt{24}$$

$$\Rightarrow k = \pm \sqrt{24}$$

$$\Rightarrow k = 2\sqrt{2}$$

(ii) We have, $2x^2 + 8x + 3 = 0$

Here, $a = 8$, $b = -2k$, $c = 6$

For equal roots, we have

$$D = 0$$

i.e., $b = -2k$, $c = 6$

For equal roots, we have

$$D = 0$$

i.e., $b = -2k$, $c = 6$

For equal roots, we have

$$D = 0$$

i.e., $b = -2k$, $c = 6$

For equal roots, we have

$$D = 0$$

i.e., $b = -2k$, $c = 6$

7. (i) We have,
$$2x^2 + kx + 3 = 0$$

Here,
$$a = 2$$
, $b = k$, $c = 3$

$$D = b^2 - 4ac = k^2 - 4 \times 2 \times 3 = k^2 - 24$$
 For equal roots

$$D = 0$$

i.e.,
$$k^2 - 24 = 0$$

$$\Rightarrow k^2 = 24$$

$$\Rightarrow k = \pm \sqrt{24}$$

$$\Rightarrow k = +2\sqrt{6}$$

(ii) We have,
$$kx(x-2) + 6 = 0$$

$$\Rightarrow$$
 kx2 - 2kx + 6 = 0

Here,
$$a = k$$
, $b = -2k$, $c = 6$

$$D = 0$$

i.e.,
$$b2 - 4ac = 0$$

$$\Rightarrow$$
 (-2k)2 - 4 × k × 6 = 0

$$\Rightarrow$$
 4k2 $-$ 24k = 0

$$\Rightarrow$$
 4k (k - 6) = 0

Either
$$4k = 0$$
 or $k - 6 = 0$

$$\Rightarrow$$
 k = 0 or k = 6

 $\Rightarrow 4k2 - 24k = 0$ $\Rightarrow 4k(k-6) = 0$ Either 4k = 0 or k-6 = 0 $\Rightarrow k = 0$ or k = 6But k = 0

So,
$$k = 6$$

MATHEMATICS QUADRATIC EQUATIONS

⇒ 4k(2-24k=0)⇒ 4k(k-6) = 0Either 4k = 0 or k-6 = 0⇒ k = 0 or k = 6But k = 0 of k = 6But k = 0 of k = 6But k = 0 of k = 68. Since the equation $(a - b)k^2 + (b - e) \times + (c - a) \times 0$ has equal roots, therefore discriminant $D = (b - c)^2 - 4(a - b)(c - a) = 0$ ⇒ $b^2 + c^2 - 2bc - 4(ac - a) - bc + ab)$ ⇒ $b^2 + c^2 - 2bc - 4(ac + 4a^2 + 4bc - 4ab = 0)$ ⇒ $2a^3 + b^2 + c^2 - 2bc + 4ac + 4a^2 + 4bc - 4ab = 0$ ⇒ $(2a)^3 + (c^2)^3 + ($ k = 0 or k $\Rightarrow k = 0 \text{ or } k = 6$ But k = 0.6) k = 6But k = 0 6 equation).

So, k = -

$$D = (b-c)^2 - 4(a-b)(c-a) = 0$$

$$\Rightarrow$$
 b² + c² - 2bc - 4(ac - a² - bc + ab

$$\Rightarrow$$
 b² + c² - 2bc + 4ac + 4a² + 4bc - 4ab = 0

$$\Rightarrow$$
 4a² + b² + c² - 4ab + 2bc - 4ac = 0

$$\Rightarrow$$
 (2a)² + (-b)² + (-c)² + 2(2a) (-b) + 2(-b) (-c) + 2(-c) 2a = 0

$$\Rightarrow$$
 $(2a-b-c)^2 = 0$

$$\Rightarrow$$
 2a - b - c = 0

$$\Rightarrow$$
 2a = b + c. Hence Proved.

-4ab + 2 $(2a)^{2} + (-b)^{2} + (-c)^{2} + 2($ $\Rightarrow (2a - b - c)^{2} = 0$ $\Rightarrow 2a - b - c = 0$ $\Rightarrow 2a$

9. The given equation is
$$(1 + m^2) x^2 + (2mc)$$

Here, $A = 1 + m^2$, $B = 2mc$ and $C = c^2 - a^2$

Since the given equation has equal root

 $\Rightarrow (2mc)^2 - 4(1 + m^2) (c^2 - a^2) = 0$
 $\Rightarrow 4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0$
 $\Rightarrow m^2c^2 - c^2 + a^2 - m^2c^2 + m^2a^2 = 0$. [Divide $\Rightarrow -c^2 + a^2(1 + m^2) = 0$

Tille Do ardstudy. comine boardstudy. comine boardstudy. comine boardstudy.

$$\Rightarrow$$
 $(2mc)^2 - 4(1 + m^2)(c^2 - a^2) = 0$

$$\Rightarrow 4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0$$

$$\Rightarrow (2mc)^{2} - 4\{1 + m^{2}\} \{c^{2} - a^{2}\} = 0$$

$$\Rightarrow 4m^{2}c^{2} - 4(c^{2} - a^{2} + m^{2}c^{2} - m^{2}a^{2}) = 0$$

$$\Rightarrow m^{2}c^{2} - c^{2} + a^{2} - m^{2}c^{2} + m^{2}a^{2} = 0. \text{ [Dividing throughout by 4]}$$

$$\Rightarrow -c^{2} + a^{2} (1 + m^{2}) = 0$$

$$\Rightarrow c^{2} = a(1 + m^{2}) \text{ Hence Proved}$$
10.

$$\Rightarrow$$
 - $c^2 + a^2 (1 + m^2) = 0$

$$\Rightarrow$$
 c² = a(1 + m²) Hence Proved

Sum of the roots =
$$\frac{-B}{A}$$
 \Rightarrow $\sin \theta + \cos \theta = \frac{-b}{a}$...(i)

Product of the roots = $\frac{C}{A}$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{c}{a}$...(ii)

Now, we have, $\sin^2 \theta + \cos^2 \theta = 1$ \Rightarrow $(\sin \theta + \cos \theta)^2 - 2\sin \theta \cos \theta = 1$ \Rightarrow $(\sin \theta + \cos \theta)^2 - 2\sin \theta \cos \theta = 1$ \Rightarrow $(\frac{-b}{a})^2 + 2 \cdot \frac{c}{a} = 1$
 $\Rightarrow \frac{b^2}{a^2} - \frac{2c}{a} = 1$ or $b^2 - 2ac = a^2$
 $\Rightarrow a^2 - b^2 + 2ac = 0$

Long Answer:

1. We have, $abx^2 + (b^2 - ac)x - bc = 0$

Here, $A = ab$, $B = b^2 - ac$, $C = -bc$
 $x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$
 $\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 - ac)^2 - 4(ab)(-bc)}}{2ab}$
 $\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 - ac)^2 + 4ab^2c}}{2ab}$
 $\Rightarrow x = \frac{-(b^3 - ac) \pm \sqrt{(b^2 - ac)^2 + 4ab^2c}}{2ab}$

Product of the roots =
$$\frac{c}{\theta}$$
 \Rightarrow $\sin \theta \cos \theta = \frac{c}{\theta}$...(ii)

Now, we have,
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow (\sin \theta + \cos \theta)^2 - 2\sin \theta \cos \theta = 1 \Rightarrow \left(\frac{-b}{a}\right)^2 - 2 \cdot \frac{c}{a} = 1$$

$$\Rightarrow \frac{b^2}{a^2} - \frac{2c}{a} = 1 \quad \text{or} \quad b^2 - 2ac = a^2$$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$

1. We have,
$$abx^2 + (b^2 - ac) x - bc = 0$$

Here,
$$A = ab$$
, $B = b^2 - ac$, $C = -bc$

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

$$\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 - ac)^2 - 4(ab)(-bc)}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 - ac)^2 + 4ab^2c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^4 - 2ab^2c + a^2c^2 + 4ab^2c)}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac) \pm \sqrt{(b^2 + ac)^2}}{2ab} \Rightarrow x = \frac{-(b^2 - ac) \pm (b^2 + ac)}{2ab}$$

Sum of the roots =
$$\frac{-B}{4}$$
 \Rightarrow $\sin B + \cos \theta = \frac{-b}{a}$...(i)

Product of the roots = $\frac{-B}{A}$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{-b}{a}$...(ii)

Now, we have, $\sin^2 \theta + \cos \theta = 1$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{-b}{a}$...(iii)

Now, we have, $\sin^2 \theta + \cos \theta = 1$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{-b}{a}$...(iii)

Now, we have, $\sin^2 \theta + \cos \theta = 1$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{-b}{a}$...(iii)

Now, we have, $\sin^2 \theta + \cos \theta = 1$ \Rightarrow $\sin \theta \cdot \cos \theta = \frac{-b}{a}$...(iii)

$$\Rightarrow \frac{B_a^2 - 2a}{a^2 - b^2} = 1$$
 or $B^2 - 2ac = a^2$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$

Long Answer:

1. We have, $abx^2 + (b^2 - ac)x = bc = 0$

Here, $A = 3b$, $B = b^2 - 3c$, $C = -bc$

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 - ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt{(b^2 + ac)^2 + 4abb^2 c}}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac)\pm \sqrt$$

$$x = \frac{2ac}{2ab}$$
 or $x = \frac{-2b^2}{2ab}$ \Rightarrow $x = \frac{c}{b}$ or $x = \frac{b}{a}$

i.e.,
$$b^2 - 4ac = 0$$

$$\ln (2p + 1)x^2 - (7p + 2)x + (7p - 3) = 0$$

Here,
$$a = (2p + 1)$$
, $b = -(7p + 2)$, $c = (7p - 3)$

For
$$p = -\frac{4}{7}$$

 $\left(2 \times \left(-\frac{4}{7}\right) + 1\right)x^2 - \left(7 \times \left(-\frac{4}{7}\right) + 2\right)x + \left(7 \times \left(-\frac{4}{7}\right) - 3\right) = 0$
 $\Rightarrow \frac{-1}{7}x^2 + 2x - 7 = 0$ $\Rightarrow x^2 - 14x + 49 = 0$
 $\Rightarrow x^2 - 7x - 7x + 49 = 0$ $\Rightarrow x(x - 7) - 7(x - 7) = 0$
 $\Rightarrow (x - 7)^2 = 0$ $\Rightarrow x = 7, 7$
For $p = 4$,
 $(2 \times 4 + 1)x^2 - (7 \times 4 + 2)x + (7 \times 4 - 3) = 0$
 $\Rightarrow 9x^2 - 30x + 25 = 0$ $\Rightarrow 9x^2 - 15x - 15x + 25 = 0$
 $\Rightarrow 3x(3x - 5) - 5(3x - 5) = 0$ $\Rightarrow (3x - 5)(3x - 5) = 0$
 $\Rightarrow x = \frac{5}{3}, \frac{5}{3}$
3.

For
$$p = \frac{4}{7}$$

 $(2 \times (\frac{1}{7}) + 1)x^2 - (7 \times (\frac{-4}{7}) + 2)x + (7 \times (\frac{-4}{7}) - 3) = 0$
 $\Rightarrow \frac{1}{7}x^3 + 2x - 7x + 49 = 0$
 $\Rightarrow (x - 7)^2 = 0$
 $\Rightarrow (x - 3) + 0$
 $\Rightarrow (x - 3) + 0$
 $\Rightarrow (x - 3) + 5 = 0$
 $\Rightarrow (x - 3) + 5 = 0$
 $\Rightarrow (x - 5) + 5 = 0$
 $\Rightarrow (x - 1)x + 28 + x^2 - 5x - 60x + 30 = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x - 1)(x - 7) + (x - 6)(x - 7) = 10$
 $\Rightarrow (x$

MATHEMATICS QUADRATIC EQUATIONS

$$\frac{1}{x-8} \cdot \frac{1}{x+5} = \frac{1}{3}$$

$$\Rightarrow \frac{1}{(x-3)(x+5)} \cdot \frac{1}{3} \Rightarrow \frac{2x+2}{(x-3)(x+5)} \cdot \frac{1}{3}$$

$$\Rightarrow 6x+6 = (x-3)(x+5) \Rightarrow 6x+6 = x^3 + 5x = 3x = 13$$

$$\Rightarrow x^2 + 2x = 15 = 6x = 6 = 0 \Rightarrow x^2 - 4x = 21 = 0$$

$$\Rightarrow x^2 - 7x + 3x = 21 = 0 \Rightarrow x(x-7) + 3(x-7) = 0$$

$$\Rightarrow (x-7)(x+3) = 0 \Rightarrow x = 7 \text{ or } x = -3$$
But $x \neq -3$ (age cannot be negative)

Therefore, present age of Rehman = 7 years.

5. Let the two natural numbers be x and y such that $x > y$.

According to the question,

Difference of numbers, $x = y = 5 \Rightarrow x = 5 + y$(i)

Difference of the reciprocals,

$$\frac{1}{y} \cdot \frac{1}{x^2} \cdot \frac{1}{10}$$

$$\Rightarrow 50 = 5y + y^2$$

$$\Rightarrow y^2 + 10y - 5y - 50 = 0$$

$$\Rightarrow y^2 + 10y - 5y - 50 = 0$$

$$\Rightarrow y^2 + 10y - 5y - 50 = 0$$

$$\Rightarrow (y + 5) (y + 10) = 0$$
The required numbers are 10 and 5.

Let the two consecutive odd numbers be x and $x \neq 2$.

Therefore, present age of Rehman = 7 years.

5. Let the two natural numbers be x and y such that x > y.

According to the question,

Difference of numbers,
$$x - y = 5 \Rightarrow x = 5 + y$$
(i)

Difference of the reciprocals,

$$\frac{1}{y} - \frac{1}{x} = \frac{1}{10} \qquad(ii)$$
Putting the value of (i) in. (ii)

$$\frac{1}{y} - \frac{1}{5 + y} = \frac{1}{10} \qquad \Rightarrow \frac{5 + y - y}{y(5 + y)} = \frac{1}{10}$$

$$\Rightarrow 50 = 5y + y^2 \qquad \Rightarrow y^2 + 5y - 50 = 0$$

$$\Rightarrow y^2 + 10y - 5y - 50 = 0 \qquad \Rightarrow y(y + 10) - 5(y + 10) = 0$$

$$\therefore y \text{ is a natural number.}$$

$$\therefore y = 5$$
Puttling the value of y in. (i), we have
$$\Rightarrow x = 5 + 5$$

$$\Rightarrow x = 10$$
The required numbers are 10 and 5.

6. Let the two consecutive odd numbers be x and x + 2.

$$\Rightarrow$$
 x = 5 + 5

$$\Rightarrow$$
 x = 10

$$\Rightarrow x^{2} + (x + 2)^{2} = 394 \qquad \Rightarrow x^{2} + x^{2} + 4 + 4x = 394$$

$$\Rightarrow 2x^{2} + 4x + 4 = 394 \qquad \Rightarrow 2x^{2} + 4x - 390 = 0$$

$$\Rightarrow x^{2} + 2x - 195 = 0 \qquad \Rightarrow x^{2} + 15x - 13x + 195 = 0$$

$$\Rightarrow x(x + 15) - 13(x + 15) = 0 \qquad \Rightarrow (x - 13)(x + 15) = 0$$

MATHEMATICS QUADRATIC EQUATIONS

⇒
$$x^2 + (x + 2)^2 = 394$$
 ⇒ $x^2 + x^2 + 4 + 4 + 394$
⇒ $2x^2 + 4x + 4 + 399$ ⇒ $2x^2 + 4x - 390 = 0$
⇒ $x^2 + 2x - 195 = 0$ ⇒ $x^2 + 15x - 13x - 195 = 0$.
⇒ $x(x + 15) - 13x + 15 = 0$ ⇒ $(x - 15)(x + 15) = 0$
⇒ $x(x + 15) - 13x + 15 = 0$ ⇒ $(x - 15)(x + 15) = 0$.

⇒ $x + 13 = 0$ or $x + 15 = 0$ ⇒ $x = 13$ or $x = -15$.

Hence, the numbers be x and $15 - x$.

According to given condition,

$$\frac{1}{x} + \frac{1}{15 - x} = \frac{3}{10}$$
 ⇒
$$\frac{15 - x + x}{x(15 - x)} = \frac{3}{10}$$
⇒ $50 = 3x(15 - x)$.
⇒ $50 = 15x - x^2$
⇒ $x^2 - 15x + 50 = 0$.
⇒ $x^2 - 5x - 10x + 50 = 0$.
⇒ $x(x - 5)(x - 10) = 0$.
⇒ $x + 5$ then $15 - x = 15 - 5 = 10$.

When $x = 20$, then $15 - x = 15 - 10 = 5$.

Hence, the two numbers are 5 and 10 .

8. Let Shefall's marks in Mathematics be x .

Therefore, Shefall's marks in English is $(30 - x)$.

Now, according to question,
⇒ $(x + 2)(30 - x - 3) + 210$
⇒ $25x - x^2 + 54 - 210 = 0$
⇒ $25x - x^2 + 54 - 210 = 0$

When
$$x = 5$$
, then $15 - x = 15 - 5 = 10$

When
$$x = 10$$
, then $15 - x = 15 - 10 = 5$

$$\Rightarrow$$
 (x + 2) (30 - x - 3) = 210

$$\Rightarrow (x+2)(27-x)=210$$

$$\Rightarrow 27x - x^2 + 54 - 2x = 210$$

$$\Rightarrow 25x - x^2 + 54 - 210 = 0$$

$$\Rightarrow 25x - x^2 - 156 = 0$$

$$\Rightarrow$$
 -(x^2 - 25x + 156) = 0

$$\Rightarrow x^2 - 25x + 156 = 0$$

$$= x^2 - 13x - 12x + 156 = 0$$

$$\Rightarrow$$
 x(x - 13) - 12(x - 13) = 0

$$\Rightarrow$$
 (x - 13) (x - 12) = 0

Either
$$x - 13$$
 or $x - 12 = 0$

$$\therefore x = 13 \text{ or } x = 12$$

Marks in English =
$$30 - 13 = 17$$

marks in English =
$$30 - 12 = 18$$
.

Then, time taken to cover 360 km =
$$\frac{360}{x}$$

Now, new increased speed =
$$(x + 5)$$
 km/h

So, time taken to cover 360 km =
$$\frac{360}{x+5}$$
 h

According to question,
$$\frac{360}{x} - \frac{360}{x+5} = 1$$

MATHEMATICS

QUADRATIC EQUATIONS

$$\Rightarrow 25x + x^2 - 156 = 0$$

$$\Rightarrow (x^2 - 25x + 156) = 0$$

$$\Rightarrow x^2 - 25x + 156 = 0$$

$$\Rightarrow x^2 - 13x + 12x + 156 = 0$$

$$\Rightarrow x(x - 13) + 12(x + 13) = 0$$

$$\Rightarrow (x - 13) + (x + 12) = 0$$
Either $x_1 - 13$ or $x_1 = 12$

Therefore, Shefall's marks in Mathematics = 13

Marks in English = $30 - 13 = 17$
or Shefall's marks in Mathematics = 312
marks in English = $30 - 12 = 18$.

9. Let the uniform speed of the train for x km/h.

Then, time taken to cover $360 \text{ km} = \frac{360}{50} \text{ h}$

Now, new increased speed = $(x + 5) \text{ km/h}$

So, fine taken to cover $360 \text{ km} = \frac{360}{x} \text{ h}$

Now, new increased speed = $(x + 5) \text{ km/h}$

So, fine taken to cover $360 \text{ km} = \frac{360}{x} \text{ h}$

According to quieston, $\frac{360}{x} = \frac{460}{x^2 + 5} \text{ h}$

According to quieston, $\frac{360}{x} = \frac{460}{x^2 + 5} \text{ h}$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)} = 1$$

$$\Rightarrow \frac{360(x + 5 - x)}{x(x + 5)}$$

$$\Rightarrow \frac{360 \times 5}{x(x+5)} = 1 \Rightarrow 1800 = x^2 + 5x$$

$$x^2 + 5x - 1800 = 0 \Rightarrow x^2 + 45x - 40x - 1800 = 0$$

$$\Rightarrow$$
 $x(x + 45) - 40(x + 45) = 0 \Rightarrow $(x + 45)(x - 40) = 0$$

Either
$$x + 45 = 0$$
 or $x - 40 = 0$

$$x = -45$$
 or $x = 40$

therefore,
$$x = 40$$

ength of side of the $\Rightarrow x - y = 6 \text{ or } x = y + 6 \dots(ii)$ Putting the value of x in terms of y from equation (ii), in equation (ij), we get $(y + 6)^2 + y^2 = 468$ $\Rightarrow y^2 + 12y + 36 + y^2 = 468 \text{ or } 232 + 12y - 432 = 0$ $\Rightarrow y^2 + 6y - 216 = 0$ $\Rightarrow y^2 + 18y - 12y - 216 = 0$ $\Rightarrow y(y + 18) - 12(y + 18) = 0$ $\Rightarrow (y + 18)(y - 12) = 0$ Either y + 18 = 0 or y = 0

Then,
$$x^2 + y^2 = 468 ...(i)$$

$$4x - 4y = 24$$

$$\Rightarrow$$
 x - y = 6 or x = y + 6...(ii)

.2 = 0 .18) = 0 ..y - 12) = 0 ..y - 18 = 0 or y - 12 = 0 $\Rightarrow y = -18 \text{ or } y = 12$ But, sides cannot be negative, so y = 12Therefore, x = 12 + 6 = 18Hence, sides of two squares are x = 10 = 10Case Study Answers:

1. Answer:

i. (d) a, b ar
ii. (b) 7
iii. ... y - 12 = 0 ... y = 12 ... sides cannot be negative, so y = 12Therefore, x = 12 + 6 = 18Hence, sides of two squares are 18 m and 12 m.

ase Study Answers:

swer:

(d) a, b and c are real numbers a $\neq 0$ (b) 2
(a) x(x + 3) + 7 = 5x + 11lution: ... x(x + 3) + 7 = 5y $\Rightarrow x^2 + 3y$

$$(y + 6)^2 + y^2 = 468$$

$$\Rightarrow y' + 12y + 36 + y' = 468 \text{ or } 232 + 12y - 432 = 0$$

$$\Rightarrow y^2 + 18y - 216 = 0$$

$$\Rightarrow y^2 + 18y - 12y - 216 = 0$$

$$\Rightarrow (y + 18) (y - 12) = 0$$

$$\Rightarrow (y + 18)(y - 12) = 0$$
Either $y + 18 = 0$ or $y - 12 = 0$

$$\Rightarrow y = -18 \text{ or } y = 12$$
But, sides cannot be negative, so $y \neq 12$
Therefore, $x = 12 + 6 = 18$
Hence, sides of two squares are 18 m and 12 m.

Case Study Answers:

1. Answer:

i. (d) a, b and c are real numbers a ≠ 0
ii. (b) 2
iii. (a) $x(x + 3) + 7 = 5x - 11$

Solution:

a. $x(x + 3) + 7 = 5x - 11$

$$\Rightarrow x^2 + 3x + 7 = 5x - 11$$

$$\Rightarrow x^2 - 2x + 18 = 0 \text{ is a quadratic equation.}$$

$$\Rightarrow$$
 y² + 6y - 216 = 0

$$\Rightarrow$$
 y² + 18y - 12y - 216 = 0

$$\Rightarrow$$
 y(y + 18) - 12(y + 18) = 0

$$\Rightarrow$$
 (y + 18)(y - 12) = 0

Either
$$y + 18 = 0$$
 or $y - 12 = 0$

$$\Rightarrow$$
 y = -18 or y = 12

Therefore,
$$x = 12 + 6 = 18$$

a.
$$x(x+3)+7=5x-11$$

$$\Rightarrow x^2 + 3x + 7 = 5x - 11$$

b.
$$(x-1)^2 - 9 = (x-4)(x+3)$$

$$\Rightarrow x^2 - 2x - 8 = x^2 - x - 12$$

c.
$$x^2(2x+1) - 4 = 5x^2 - 10$$

$$\Rightarrow 2x^3 + x^2 - 4 = 5x^2 - 10$$

d.
$$x(x-1)(x+7) = x(6x-9)$$

$$x^3 + 6x^2 - 7x = 6x^2 - 9x$$

i. (b)
$$2x^2 + 2x - 649 = 0$$

.atic equation. $x^4 - 4 = 5x^2 - 10$ $\Rightarrow 2x^3 - 4x^3 + 6 = 0 \text{ is not a quadratic equation.}$ $d. \quad x(x - 1)(x + 7) = x(6x - 9)$ $x^3 + 6x^2 - 7x = 6x^2 - 9x$ $x^3 + 2x = 0 \text{ is not a quadratic equation.}$ iv. (d) All of these.
v. (d) None of these

2. Answer:
i. (b) $2x^2 + 2x - 649 = 0$ Solution:

Let two consecutive ir $\Rightarrow 2x^2 + 2x + 1 - 6x + 1 = 0$ $\Rightarrow 2x^2 + 2x + 1 - 6x + 1 = 0$ $\Rightarrow 2x^2 + 7$ (c)

$$\Rightarrow 2x^2 + 2x + 1 - 650 = 0$$

$$\Rightarrow$$
 2x² + 2x - 649 = 0

ii. (c)
$$x^2 - 15x + 50 = 0$$

$$\Rightarrow$$
 10(15 - x + x) = 3x(15 - x)

$$\Rightarrow 50 = 15x - x^2$$

$$\Rightarrow x^2 - 15x + 50 = 0$$

iii. (d)
$$x^2 + 3x - 504 = 0$$

$$\Rightarrow x^2 + 3x - 504 = 0$$

iv. (c)
$$x^2 - 3x - 108 = 0$$

$$\Rightarrow$$
 $x^2 - 84 = 3x + 24$

$$\Rightarrow$$
 $x^2 - 3x - 108 = 0$

v. (d)
$$x^2 + 12x - 160 = 0$$

$$\Rightarrow$$
 x² + 12x - 160 = 0