

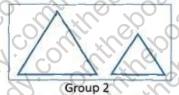
Triangles

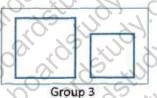
1. Congruent figures:

Two geometrical figures are called **congruent** if they superpose exactly on each other, that is, they are of the same chang and circ that is, they are of the same shape and size.

Similar figures:

Two figures are similar, if they are of the same shape but not necessarily of the same





- 3. All congruent figures are similar but the similar figures need not to be congruent.
- 4. Two polygons having the same number of sides are similar if
 - their corresponding angles are equal and
 - their corresponding sides are in the same ratio (or proportion).

Note: Same ratio of the corresponding sides means the scale factor for the polygons.

- 5. Important facts related to similar figures are:
 - All circles are similar.
 - All squares are similar.
 - All equilateral triangles are similar,
 - The ratio of any two corresponding sides in two equiangular triangles is always same.

6. Two triangles are similar (~) if

- If the angles in two triangles are:

Actildy Comits

Same and the corresponding sides are of the same size, the triangles are congruent.

mineboardstul

rahoaidstud!

" Countile pos

Different, the triangles are neither similar nor congruent.

Same, the triangles are similar.

Same and the corresponding side ven figure, A In the given figure, $A \leftrightarrow D$, $B \leftrightarrow E$ and $C \leftrightarrow F$, which means triangles ABC and DEF are similar retiry countile post which is represented by Δ ABC ~ Δ DEF indi comineboois www.dstudy.com ardeitldy.comit

contheboards

8. If \triangle ABC ~ \triangle PQR, then

i.
$$\Delta A = \Delta P$$

ii.
$$\Delta B = \Delta Q$$

iii.
$$\Delta C = \Delta R$$

iv.
$$\frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$$

9. Equiangular triangles:

Two triangles are equiangular if their corresponding angles are equal. The ratio of any two corresponding sides in such triangles is always the same.

10.Basic Proportionality Theorem (Thales Theorem):

If a line is drawn parallel to one side of a triangle to intersect other two sides in distinct points, the other two sides are divided in the same ratio.

11. Converse of BPT:

If a line divides any two sides of a triangle in the same ratio then the line is parallel to the third side.

12.A line drawn through the mid-point of one side of a triangle which is parallel to another side bisects the third side. In other words the line is side bisects the third side. In other words, the line joining the mid-points of any two sides of a triangle is parallel to the third side.

13.AAA (Angle-Angle-Angle) similarity criterion:

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

14.AA (Angle-Angle) similarity criterion:

If two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angles will also be equal.

Thus, AAA similarity criterion changes to AA similarity criterion which can be stated as follows:

If two angles of one triangle are respectively equal to two angles of other triangle, then the two triangles are similar.

15. Converse of AAA similarity criterion:

If two triangles are similar, then their corresponding angles are equal.

16.SSS (Side-Side-Side) similarity criterion:

If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the " willeby

wahosti

wilhelpc

ACHILDAY.C

"YA COL

-mithe

ardstud

maids

MATHEMATICS TRIANGLES

sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

17. Converse of SSS similarity criterion:

If two triangles are similar, then their corresponding sides are in constant proportion.

18.SAS (Side-Angle-Side) similarity criterion:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

19. Converse of SAS similarity criterion:

If two triangles are similar, then one of the angles of one triangle is equal to the corresponding angle of the other triangle and the sides including these angles are in constant proportion.

20.RHS (Right angle-Hypotenuse-Side) criterion:

If in two right triangles, hypotenuse and one side of one triangle are proportional to the hypotenuse and one side of another triangle, then the two triangles are similar. This criteria is referred as the RHS similarity criterion

21. Pythagoras Theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Thus, in triangle ABC right angled at B, $AB^2 + BC^2 = AC^2$

22. Converse of Pythagoras Theorem:

If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

23. The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Thus, if
$$\triangle$$
 ABC ~ \triangle PQR, then $\frac{ar}{ar} \frac{\triangle ABC}{\triangle PQR} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$

Also, the ration of the areas of two similar triangles is equal to the ration of the squares of the corresponding medians.

24. Some important results of similarity are:

In an equilateral or an isosceles triangle, the altitude divides the base into two equal parts.

If a perpendicular is drawn from the vertex of the right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

The area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.

300(3)

-nithe

Sum of the squares of the sides of a rhombus is equal to the sum of the squares of its comittee

MATHEMATICS TRIANGLES

diagonals.

In an equilateral triangle, three times the square of one side is equal to four times the square of one of its altitudes.

25. Triangle

A triangle can be defined as a polygon which has three angles and three sides. The interior angles of a triangle sum up to 180 degrees and the exterior angles sum up to 360 degrees. Depending upon the angle and its length, a triangle can be categorized in the following types-

- Scalene Triangle All the three sides of the triangle are of different measure
- Isosceles Triangle Any two sides of the triangle are of equal length
- Equilateral Triangle All the three sides of a triangle are equal and each angle measures 60 degrees
- Acute angled Triangle All the angles are smaller than 90 degrees
- Right angle Triangle Anyone of the three angles is equal to 90 degrees
- Obtuse-angled Triangle One of the angles is greater than 90 degrees

26. Similarity Criteria of Triangles

To find whether the given two triangles are similar or not, it has four criteria. They are:

Side-Side- Side (SSS) Similarity Criterion - When the corresponding sides of any two triangles are in the same ratio, then their corresponding angles will be equal and the triangle will be considered as similar triangles.

Angle Angle Angle (AAA) Similarity Criterion - When the corresponding angles of any two triangles are equal, then their corresponding side will be in the same ratio and the triangles are considered to be similar.

Angle-Angle (AA) Similarity Criterion - When two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are considered as similar.

Side-Angle-Side (SAS) Similarity Criterion - When one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are said to be similar.

27. Proof of Pythagoras Theorem

Statement: As per Pythagoras theorem, "In a right-angled triangle, the sum of squares of i.e. in in eboards! and attidy comitned out two sides of a right triangle is equal to the square of the hypotenuse of the triangle."

maidstudy comit

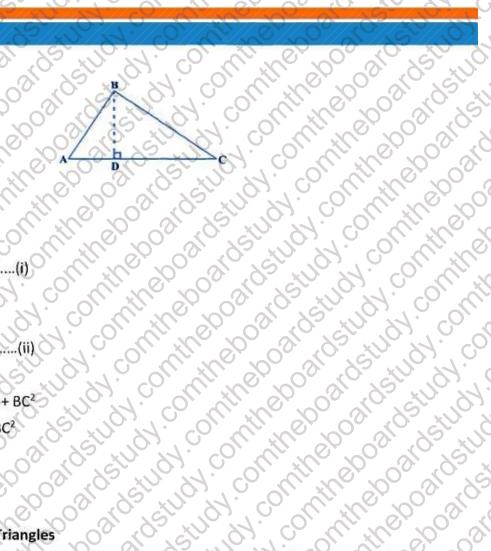
I.A. COMINEDO arde

Proof -

rannardstudy.com contine boards tud mine boardstudy. Consider the right triangle, right-angled at B. in contineboot

Construction-

HINY CORNING Draw BD L AC



......(i)

ABC

LC = BC/AC

., CD, AC = BC²......(ii)

Adding (i) and (ii),

AD, AC + CD, AC = AB² + BC²

AC (AD + DC) = AB² + BC²

AC² = AB² + BC²

ice, prove _= AB² + BC²

JC) = AB² + BC²

AC) = AB² + BC²

AC² = AB² + BC²

Hence, proved.

28. Problems Related to Triangles

A girl having a height of 90 cm is w²

m/s. Calculate the length of the the ground.

§ and T are points c²

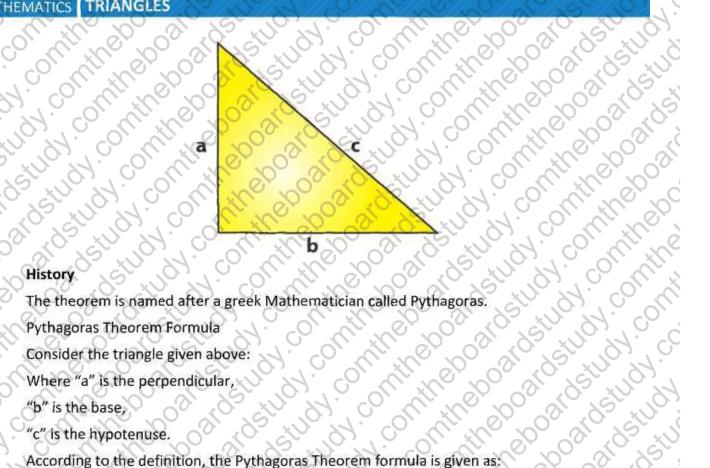
low, prove the c²

s a poir

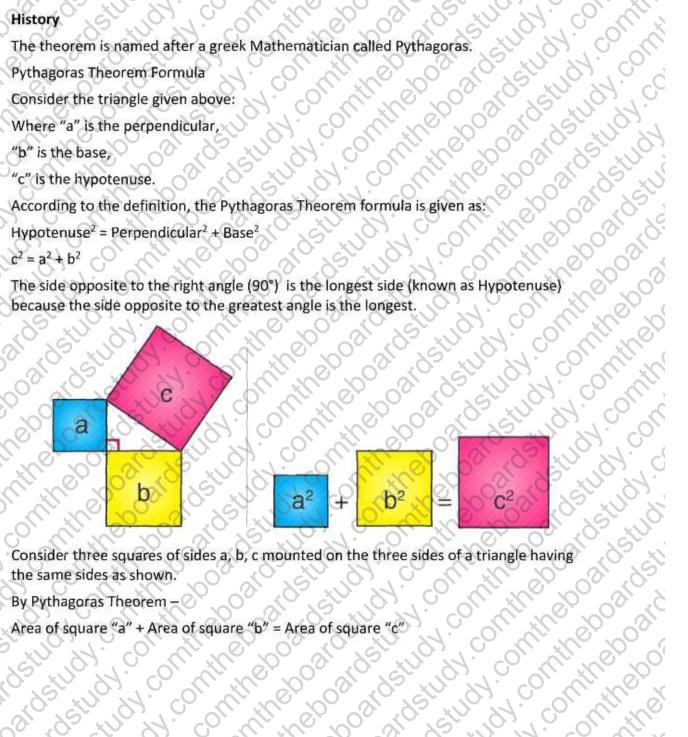
E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that triangles ABE and CFB are similar.

29. Pythagoras Theorem Statement

Pythagoras theorem states that "In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides". The sides of this triangle have been named as Perpendicular, Base and Hypotenuse. Here, the hypotenuse is the longest side, as it is opposite to the angle 90°. The sides of a right triangle (say a, b and c) a childy contine board , i'd contineboardst which have positive integer values, when squared, are put into an equation, also called a ard study comine hahoaidstudy.co mardstudy comi *IIIA COMINEDOS Pythagorean triple. in coultibeposide . Actual Contine contheboardst Mikeboardstud



$$c^2 = a^2 + b^2$$

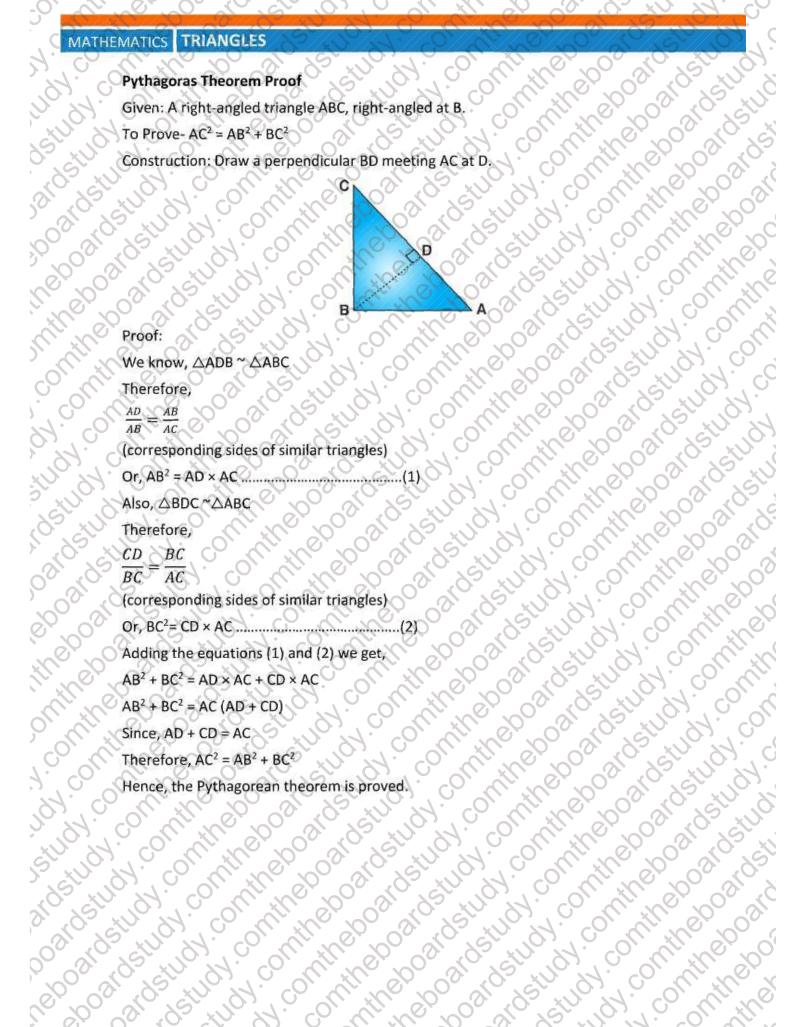


and study comits www.defingh.com

'Yelllon'

*IIIA COL

Area of square "a" + Area of square "b" Area of square "c" comitte 60 rahoaidst mikeboari ardstudi



$$\frac{AD}{AB} = \frac{AB}{AC}$$

Or,
$$AB^2 = AD \times AC$$
 (1)

$$\frac{CD}{BC} = \frac{BC}{AC}$$

Or,
$$BC^2 = CD \times AC$$
 (2)

$$AB^2 + BC^2 = AD \times AC + CD \times AC$$

$$AB^2 + BC^2 = AC (AD + CD)$$

Since,
$$AD + CD = AC$$

Therefore,
$$AC^2 = AB^2 + BC^2$$

ND WAP : LEARNING WADE SIMPLE

				201	30		94	6	C. Elgure	then a	potenuse is In right AABC. other two BC = AB2+AC2	ual to the
30	3103	() Corresponding amples are equal	ii) Corresponding sides are in the same ratio			AABC - APOR	J. Sample M. Co.		Statement	I. If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.	2. In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two	sides. 3. In a transfe, if souther of one side is equal to the
	niin niin		910		theorems	Sitangles		Area of Similar Triangles		The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides	Here AABC APOR	ar(ABC) = (AB)2
Figure	if the late in	then AD AE		II OB - AE	then, DE//BC		D'H		AABC = ADEF	If Discrete (1975) Then 2A=2D; AB = EF < C = F AB = CF < C = F	Agaba = Agap	
Statement	1	The other two states are divided in the same ratio.	2. If a line divides any, two sides of a triangle in the same ratio, then the line is parallel to the third	C		3. If in two trangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two				Lim two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similiar(SSS criterion)	5. If one angle of a frangle is equal to one angle of	the other transfe and the sides including bese angles are propertional, then the two transfessare

Neb

- aney will be simil.

 2.A square and a rhombus are always

 (a) similar

 b) congruent

) similar but r when

 (a) congruent

 (b) congruent

 (c) similar but not congruent

 (d) neither similar nor congr

 3. If ΔABC ~ ΔDEF -
- . are always

 .nt

 .imilar but not congruent

 (d) neither similar nor congruent

 3. If ΔABC ~ ΔDEF and EF = ½ BC, then ar(ΔABC); (ΔDEF) is

 () 3 ; 1.

 1 : 3.

 : 9.

 1.

 tangle and a parallele at its the ratio of ** 4. If a triangle and a parallelogram are on the same base and between same parallels, then what is the ratio of the area of the triangle to the area of parallelogram?

 (a) 1:2

 (b) 3:2 ithe boards tudy continued
- (b) 3:2
- 5. D and E are respectively the points on the sides AB and AC of a triangle ABC such that AD = 2 cm, BD = 3 cm, BC = 7.5 cm and DE | BC. Then, length of DE (in cm) is

 (a) 2.5 5. D and E are respectively the points on the sides AB and AC of a triangle ABC such that AD = 2 cm, BD = 3 cm, BC = 7.5 cm and DE || BC. Then, length of DE (in cm) is

 (a) 2.5 A CHILD ON THE BOOK OF THE STATE OF THE BOOK OF THE at Al. "YEHINGA COLUMN HINY COMINEDC contheboards in coulting to st roardstudy.co ardeflidy.comi mine boardstur rahnardstudy
 - sardstudy.com annardstudi

- (a) 6. Which geometric figures are always similar?

 (a) Circles

 (b) Circles and all regular polygons

 (c) Circles and triangles

 (d) Regular

 7. \(\text{ABC} \)
- ...ays similar?

 ...ays similar?

 ...cles and triangles

 (d) Regular

 7. $\triangle ABC \simeq \triangle PQR$, $\angle B = 50^\circ$ and $\angle C = 70^\circ$ then $\angle P$ is equal to

 (a) 50° (b) 60° (c) 40° (d) 70° 8. In triangle DEF, GH is a line parallel to 16.5, DH = 5, HF = 6 then GE = ?

 19

 10 and $2C = 70^{\circ}$ then 2P is equal to

 (d) 70° 8. In triangle DEF, GH is a line parallel to EF cutting DE in G and and DF in H. If DE = 16.5, DH = 5, HF = 6 then GE = 7.

 (a) 9.

 (b) 10.

 (c) 7.5.

 (d) 8.

 9. In a rectangle Length = 8 cm, Breadth = 6 cm. Then its diagonal = ...

 (a) 9 cm.

 (b) 13 cm.

 (c) 10 cm.

 (d) 12 cm.

 (in triangle ABC, DE [] 8C AD = 3 cm, DB = 8 cm AC = 27.

 ves the line DE cut AC?

- (b) 4
- (c) 10

Hudy contine book oardstudy.comit , dstudy contine Very Short Questions:

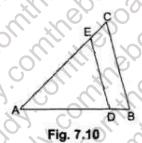
Two sides and the notorresponding riangle Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

y.comineboaro

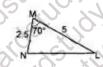
- A and B are respectively the points on the sides PQ and PR of a APQR such that PQ = 12.5 cm, PA = 5 cm, BR = 6 cm, and PB = 4 cm. Is AB | | QR? Give reason.
- , AB = 18 cm and BC = 15 cm, then find the length If DABC ~ DORP, of PR.
- $\frac{1}{3}$, then find $\frac{ar(\Delta PQR)}{}$ If it is given that $\triangle ABC \sim \triangle PQR$ with $\frac{BC}{C}$
- $\Delta DEF \sim \Delta ABC$, if DE: AB = 2: 3 and ar(ΔDEF) is equal to 44 square units. Find the area (AABC).
- Is the triangle with sides 12 cm, 16 cm and 18 cm a right triangle? Give reason
- Oardstu6. In triangles PQR and TSM, $\angle P = 55^{\circ}$, $\angle Q = 25^{\circ}$, $\angle M = 100^{\circ}$, and $\angle S = 25^{\circ}$. Is ΔQPR ~ ΔTSM? Why?
 - the boards tudy. Comming boards tudy. Comming boards tudy. Comming boards tudy. Comming boards tudy. If ABC and DEF are similar triangles such that $\angle A = 47^{\circ}$ and $\angle E = 63^{\circ}$, then the measures of ∠C = 70°. Is it true? Give reason.
 - (S) (S) Let ΔABC ~ ΔDEF and their areas be respectively 64 cm² and 121 cm2. If EF 15.4 cm, find BC.
 - ABC is an isosceles triangle right-angled at C. Prove that $AB^2 = 2AC^2$.

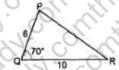
Short Questions:

In Fig. 7.10, DE | | BC. If AD = x, DB = x - 2, AE = xin contine boards tudy co windstudy.comtheboards Curitie boardstudy comi annardstudy comineboal . Achidy comine boards till And contheboards tudy neboardstudy.comithed



- Istudy contine book Pardstudy.comthe ,oardstudy.com eboardstudy.cl E and F are points on the sides PQ and PR respectively of a Δ PQR. Show that EF |QR if PQ = 1,28 cm, PR= 2.56 cm, PE = 0.18 cm and PF = 0.36 cm.
- A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower,
- In Fig. 7.13, if LM | CB and LN | CD, prove that $\frac{AM}{AB} = \frac{AN}{AB}$
- In Fig. 7.14, DE | OQ and DF | OR Show that EF | QR.
- Using converse of Basic Proportionality Theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.
- State which pairs of triangles in the following figures are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form





In Fig. 7.17, $\frac{AO}{OC} = \frac{BO}{OD} = \frac{1}{2}$ and AB = 5cm. Find the value of DC

'A' COWIN

- E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ΔABE ~ ΔCFB.

Long Questions

-ardstudy

"Yeiligh"

- Using Basic Proportionality Theorem, prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side.

 ABCD is a trapezium in which AB | | DC and its diagraph at the point O. Show that $\frac{AO}{C} = \frac{CO}{C}$ i child contheboardstud , Au contine boarde it ardstudy.com at the point O. Show that Mikeboards roaidstudy! hahoardstur cutikepost 3hoardstud

dstudy

- In Fig. 7.37, ABCD is a trapezium with AB $\mid \mid$ DC. If \triangle AED is similar to \triangle BEC, prove that AD = BC.
- angled isosceles triangle is half the area of the equilateral triangle described on its hypotenuse.
- If the areas of two similar triangles are equal, prove that they are congruent.
- Prove that the ratio of the areas of two similar triangles is equal to the square

(i)
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$

(ii)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$

- The perpendicular from A on side BC of a \triangle ABC intersects BC at D such that DB = 3CD (see Fig. 7.42). Prove that $2AB^2 = 2AC^2 + BC^2$ In an equilateral triangle, prove that three times the square of one of its altitude.

 Study Questions: STINGH'CO In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

 Study Questions:

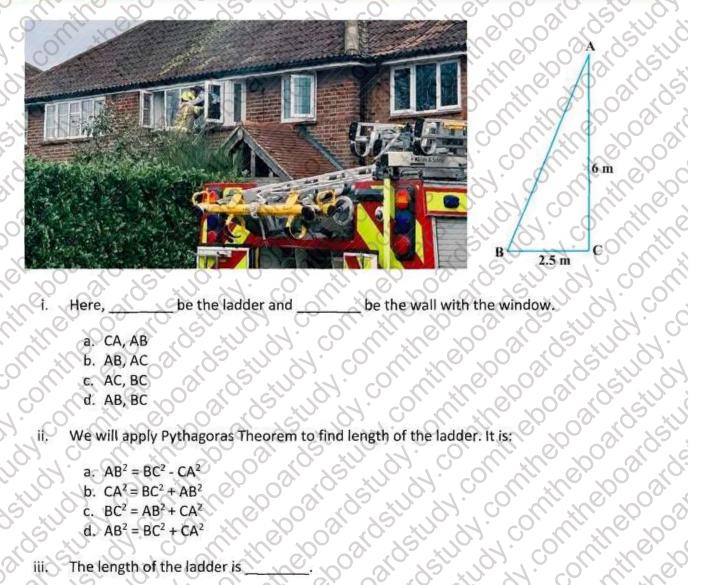
name is studying in X Standard. He is making a kite to fly it on a Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the 1. Rahul is studying in X Standard. He is making a kite to fly it on a Sunday. Few questions

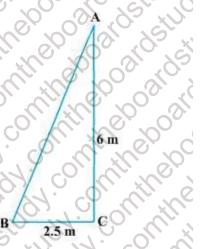
18th 19th Colonia

ing A coult

ahnaidstu ardstudy

- a. 30º
- b. 60º
- c. 90º
- Which is the correct similarity criteria applicable for smaller triangles at the upper part of this kite?
 - a. RHS
 - b. SAS
 - c. SSA
 - d. AAS
- Sides of two similar triangles are in the ratio 4:9. Corresponding medians of these triangles are in the ratio:
 - a. 2:3
 - b. 4:9
 - c. 81:16
 - d. 16:81
- In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. This theorem is called.
 - a. Pythagoras theorem
 - b. Thales theorem
 - c. The converse of Thales theorem
 - d. The converse of Pythagoras theorem
- What is the area of the kite, formed by two perpendicular sticks of length 6cm and
 - a. 48 cm²
 - b. 14 cm²
 - c. 24 cm²
 - d. 96 cm²
- 2. There is some fire incident in the house. The fireman is trying to enter the house from the Jehndy Contine boardst window as the main door is locked. The window is 6m above the ground. He places a ladder i. A. Contheboardst against the wall such that its foot is at a distance of 2.5m from the wall and its top reaches ard study comittee the window. rahnardstudy.cc mardstudy.com contheboardst Mikeboardstudi





- THE POST OF THE PROPERTY OF TH Here,

- USO Strain And Colling to Colling c. 6.5m
 d. 5.5m

 What would be the length of the ladder if it is placed 6m away from the wall and the window is 8m above the ground?

 a. 12m
 b. 10m
 c. 14m
 c. 14m
 c. 8m

 far should the ladder be placed if the fireman

- a. 6.7m (approx.)
- b. 7.7m (approx.)
- c. 5.7m (approx.)
- d. 4.7m (approx.)

Assertion Reason Questions

35tudy.comthe Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

,oardstudy.co

JAY CORTHEDO

- Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A)
- Assertion (A) is true but reason (R) is false.
- Assertion (A) is false but reason (R) is true.

Assertion: If two sides of a right angle are 7 cm and 8 cm, then its third side will

Reason: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as
 - a. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
 - Assertion: If ΔABC and ΔPQR are congruent triangles, then they are also similar triangles.

 Reason: All congruent triangles are similar but the similar congruent. b. Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
 - Assertion (A) is true but reason (R) is false.
 - d. Assertion (A) is false but reason (R) is true.

A Style Hilly Continue of the Continue of the

A child contine board study indicontine boardst "Hethidy contineboo with 8 to 0 st 1 de st contineboardstudi rahnardstudy.com -ardstudy contine in contineboardsti maidstudy contin HIN'N COMINEDORIC

- Answer Key
 Multiple Choice questions
 1. (b) ∠A = ∠E

 2. (d) neither similar nor congruent

 3. (c) 1 : 9

 4. (a) 1 : 2

 5. (b) 3

 6. (b) Circles and all regular polygons

 7. (b) 60°

 8. (a) 9

 9. (c) 10cm

 10. (a) 6

 Very Short Answer :

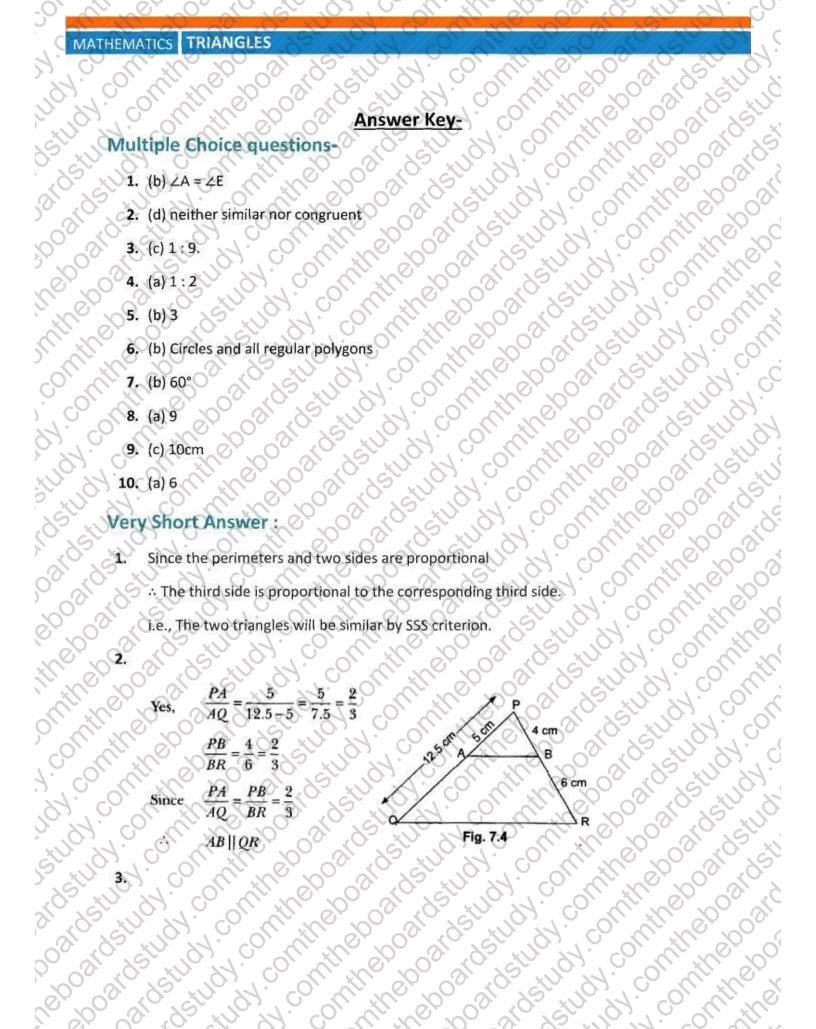
 1. Since the perimeters and two effects and two effects are similar nor congruent.

 ∴ The third-

Yes,
$$\frac{PA}{AQ} = \frac{5}{12.5 - 5} = \frac{5}{7.5} = \frac{2}{3}$$

$$\frac{PB}{BR} = \frac{4}{6} = \frac{2}{3}$$

Since
$$\frac{PA}{AQ} = \frac{PB}{BR} = \frac{2}{3}$$



Area of
$$\triangle ABC = \frac{BC^2}{RP^2} \implies \frac{9}{4} = \frac{(15)^2}{RP^2}$$

Area of
$$\triangle ABC$$
Area of $\triangle QRP$

$$= \frac{BC^2}{RP^2} \implies \frac{9}{4} = \frac{(15)^2}{RP^2}$$

$$\therefore RP^2 = \frac{225 \times 4}{9} = \frac{900}{9} = 100 \Rightarrow RP = 10 \text{ cm}$$
4.
$$\frac{BC}{QR} = \frac{1}{3}$$
(Given)
$$\frac{ar(\triangle PQR)}{ar(\triangle ABC)} = \frac{(QR)^2}{(BC)^2}$$
[: Ratio of area of single equal to the ratio of corresponding sides]
$$= \left(\frac{QR}{BC}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1} = 9:1$$
5.

$$\frac{BC}{OR} = \frac{1}{3}$$
 (Given

$$\frac{ar(\Delta PQR)}{ar(\Delta ABC)} = \frac{(QR)^2}{(BC)^2}$$

Ration of the state of the stat study contine boards it. ardstudy.comtheboard Jidy comine boards tuo [:: Ratio of area of similar triangles is equal to the ratio of square of its corresponding sides] [:: Ratio of area of similar triangles is equal to the ratio of square of its corresponding sides] [:: Ratio of area of similar triangles is equal to the ratio of square of its corresponding sides] $\Rightarrow ar(\Delta ABC) = 44$ [:: Ratio of area of similar triangles is equal to the ratio of square of its corresponding sides] $\Rightarrow ar(\Delta ABC) = \frac{44 \times 9}{\pi}$

$$= \left(\frac{QR}{BC}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1} = 9:1$$

$$DEF \sim \Delta ABC \qquad [\because \text{ Ratio of } is \text{ equal to } t]$$

$$= \frac{(DE)^2}{(AB)^2} \qquad \text{corresponding}$$

$$ar(\Delta ABC) \cdot (BC)^{2}$$

$$= \left(\frac{QR}{BC}\right)^{2} = \left(\frac{QR}{BC}\right)^{2} = \left(\frac{QR}{BC}\right)^{2} = \left(\frac{ABC}{BC}\right)^{2}$$

$$ar(\Delta ABC) = \frac{(DE)^{2}}{(AB)^{2}}$$

$$ar(\Delta ABC) = \frac{44}{ar(\Delta ABC)} = \left(\frac{ABC}{ABC}\right)^{2}$$
So, $ar(\Delta ABC) = 99$ cm.
6. Here, $12^{2} + 16^{2} = 144 + 46$

ATSMINING CORNING TO STATE THE PROPERTY OF THE 44×9 $4 \times$ $\mathcal{L}_{A} = \mathcal{L}_{B} = 63^{\circ}$ $\mathcal{L}_{A} = \mathcal{L}_{B} = 63^{\circ}$ $\mathcal{L}_{A} = \mathcal{L}_{B} = 63^{\circ}$

$$\frac{44}{ar(\Delta ABC)} = \left(\frac{2}{3}\right)^2$$

$$ar(\Delta ABC) = (AB)^{2} \qquad \text{corresponding sides}$$

$$\frac{44}{ar(\Delta ABC)} = \left(\frac{2}{3}\right)^{2} \qquad \Rightarrow \qquad ar(\Delta ABC)$$
So, $ar(\Delta ABC) = 99 \text{ cm}^{2}$
6. Here, $12^{2} + 16^{2} = 144 + 256 = 400 \neq 182$

$$\therefore \text{ The given triangle is not a right triangle.}$$
7. Since, $\angle R = 180^{\circ} - (\angle P + \angle Q)$

$$= 180^{\circ} - (55^{\circ} + 25^{\circ}) = 100^{\circ} = \angle M$$

The given triangle is not a

7. Since,
$$\angle R = 180^\circ - (\angle P + \angle Q)$$

$$= 180^\circ - (55^\circ + 25^\circ) = 100^\circ =$$

$$\angle Q = \angle S = 25^\circ \text{ (Given)}$$

$$\Delta QPR \sim \Delta STM$$
i.e., ΔQPR is not similar to $\Delta QPR \sim \Delta DEF$

$$\angle Q = \angle S = 25^{\circ}$$
 (Given)

$$= 180^{\circ} - (55^{\circ} + 25^{\circ})$$

$$\angle Q = \angle S = 25^{\circ} (Giv)$$

$$\triangle QPR \sim \Delta STM$$
i.e., $\triangle QPR$ is not S

$$8. \quad Since \triangle ABC \sim \triangle DEF$$

$$\therefore \angle A = \angle D = 47^{\circ}$$

$$\angle B = \angle E = 63^{\circ}$$

$$\therefore \angle C = 180^{\circ} - (\angle A)$$

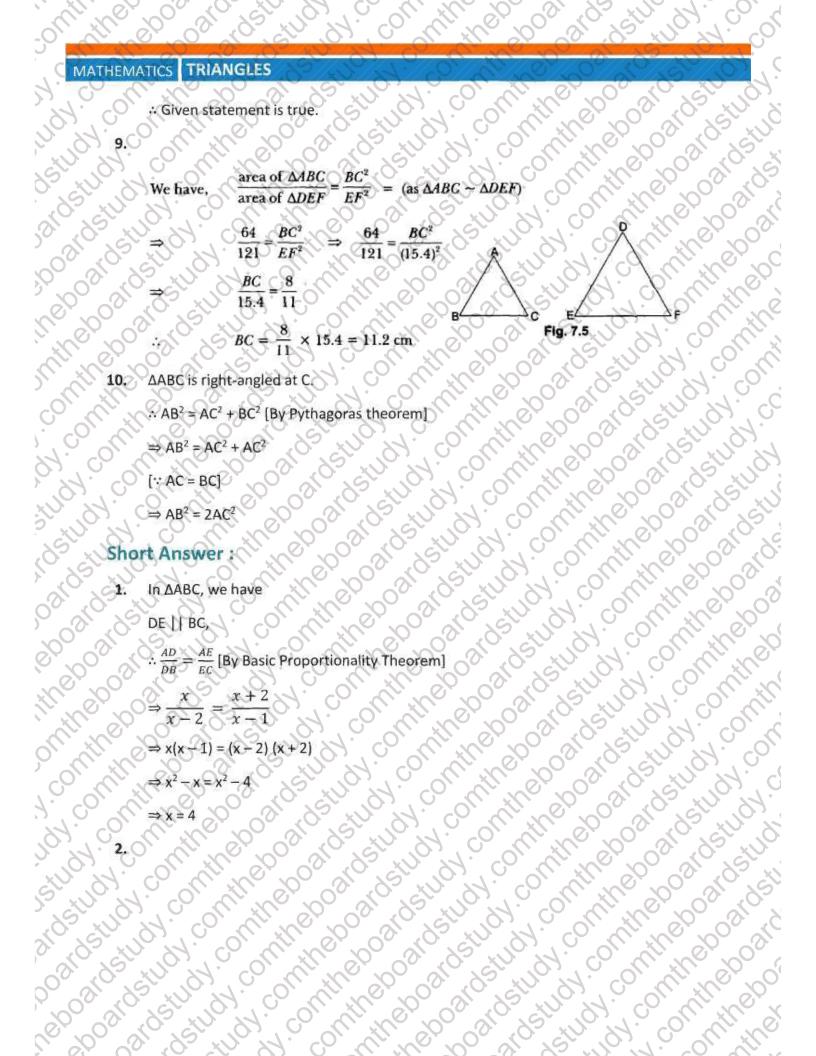
$$\therefore \angle C = 180^{\circ} - (\angle A + \angle B) = 180^{\circ} - (47^{\circ} + 63^{\circ}) = 70^{\circ}$$

We have,
$$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta DEF} = \frac{BC^2}{EF^2} = (\text{as } \Delta ABC \sim \Delta DEF)$$

$$\Rightarrow \frac{64}{121} = \frac{BC^2}{EF^2} \Rightarrow \frac{64}{121} = \frac{BC^2}{(15.4)^2}$$

$$BC = 8$$

$$BC = \frac{8}{11} \times 15.4 = 11.2 \text{ cm}$$



$$\Rightarrow$$
 AB² = AC² + AC²

$$[::AC = BC]$$

$$\Rightarrow AB^2 = 2AC^2$$

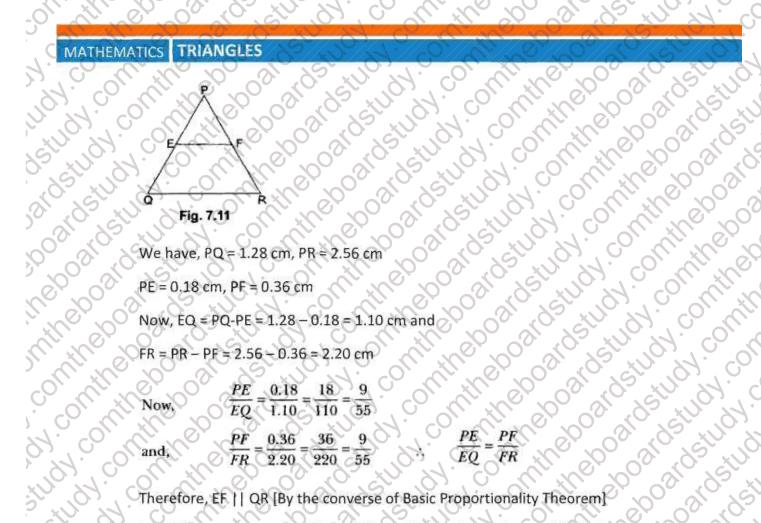
$$\therefore \frac{AD}{DB} = \frac{AE}{EC} [By Basic Proportionality Theorem]$$

$$\Rightarrow \frac{x}{x-2} = \frac{x+2}{x-1}$$

$$\Rightarrow$$
 x(x-1) = (x-2) (x+2)

$$\Rightarrow x^2 - x = x^2 - 4$$

$$\Rightarrow x = 4$$



PE = 0.18 cm, PF = 0.36 cm

Now, EQ = PQ-PE = 1.28 - 0.18 = 1.10 c

FR = PR - PF = 2.56 - 0.36 = 2.20 cm

Now,
$$\frac{PE}{EQ} = \frac{0.18}{1.10} = \frac{18}{110} = \frac{9}{55}$$

and, $\frac{PF}{FR} = \frac{0.36}{2.20} = \frac{36}{220} = \frac{9}{55}$

$$\begin{array}{ll}
-56 \text{ cm} \\
= 1.10 \text{ cm and} \\
0 \text{ cm} \\
= \frac{9}{55} \\
= \frac{9}{55} \\
= \frac{PE}{FR} \\
= \frac{PF}{FR}$$

M. Coulting to State of the contract of the co ithe boards tudy contine of Cepoards tudy contine

 $\frac{PE}{EQ} = \frac{PF}{FR}$ | | QR [By the converse of Basic Proportionality Theorem]
rtical pole of length 6m and BC be its shadow and DF thadow. Join AC and DF.

and Δ DEF, we have $E = 90^{\circ}$ $\frac{PE}{EQ} = \frac{PF}{FR}$...erore, EF | QR [By the converse of Basic Proportionality Theorem]

Let AB be a vertical pole of length 6m and BC be its shadow and DE be tower and EF be its shadow. Join AC and DF.

Now, in \triangle ABC and \triangle DEF, we have $\angle B = \angle E = 90^{\circ}$ $\angle C = \angle F$ rdstudy.com Now, in $\triangle ABC$ and $\triangle DEF$, we have $\angle B = \angle E = 90^{\circ}$

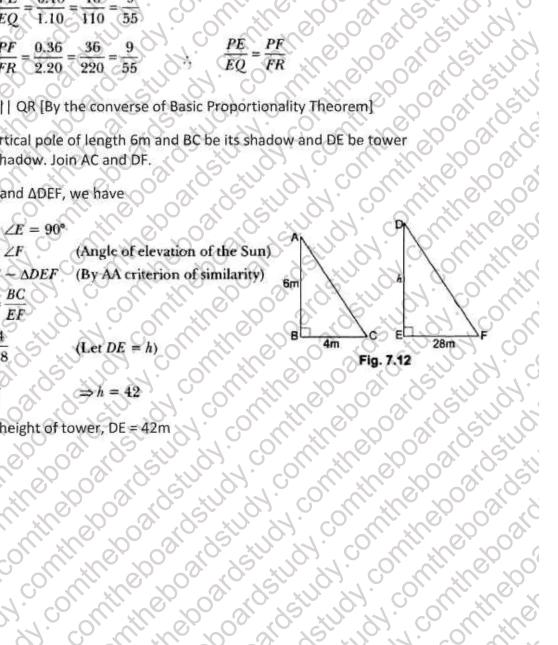
$$\angle B = \angle E = 90^{\circ}$$

$$\angle C = \angle F$$

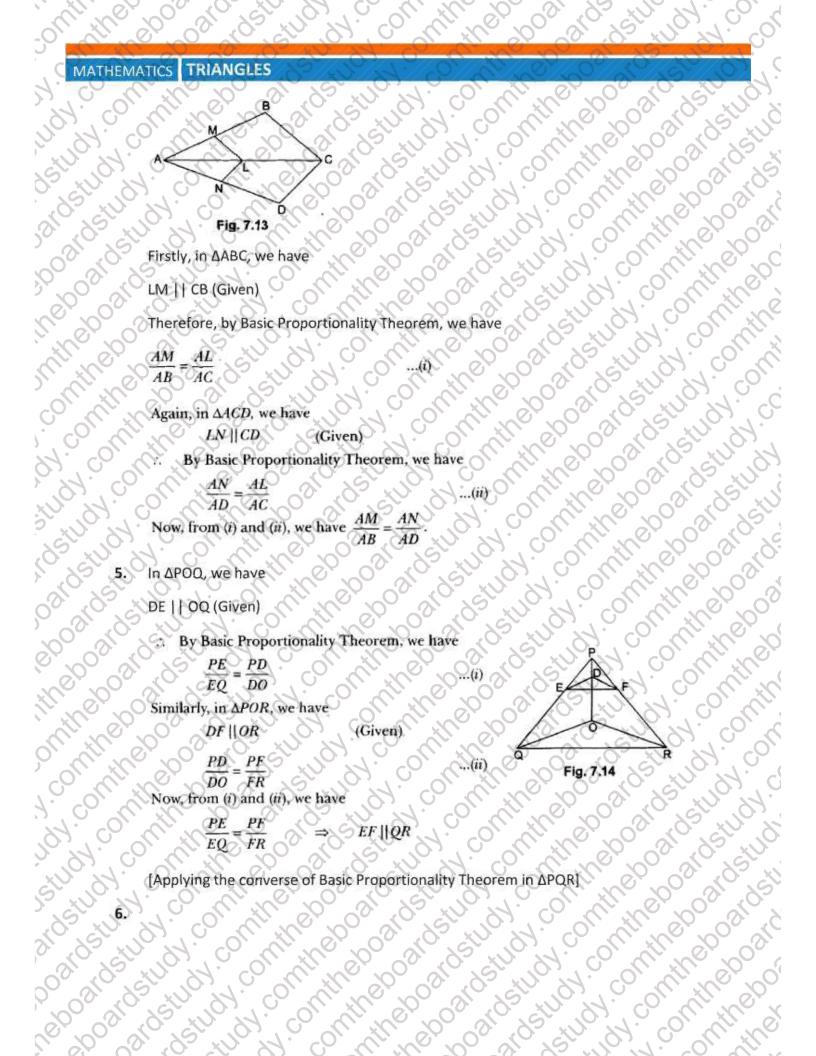
ontheboards

$$\Rightarrow \frac{6}{h} \Rightarrow \frac{4}{28}$$

$$\Rightarrow \bigcirc \frac{6}{h} = \frac{1}{7}$$



ADEF (By AA) ADEFLINY CONTINUEDO AND STILL OF THE PARTY. SOUTH THE PARTY OF THE PARTY O



$$\frac{\Delta M}{\Delta B} = \frac{\Delta L}{\Delta C}$$
 ...(i)

$$\frac{AN}{AD} = \frac{AL}{AC}$$

$$\frac{AC}{AC}$$

$$\frac{AC}{AC}$$

$$\frac{AC}{AC}$$

$$\frac{PE}{EO} = \frac{PD}{DO}$$

$$\frac{PD}{DO} = \frac{PF}{FR}$$

BE || OQ (Given)

By Basic Proportionality Theorem, we have

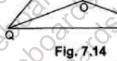
$$\frac{PE}{EQ} = \frac{PD}{DO}$$
Similarly, in ΔPOR , we have

$$DF || OR$$

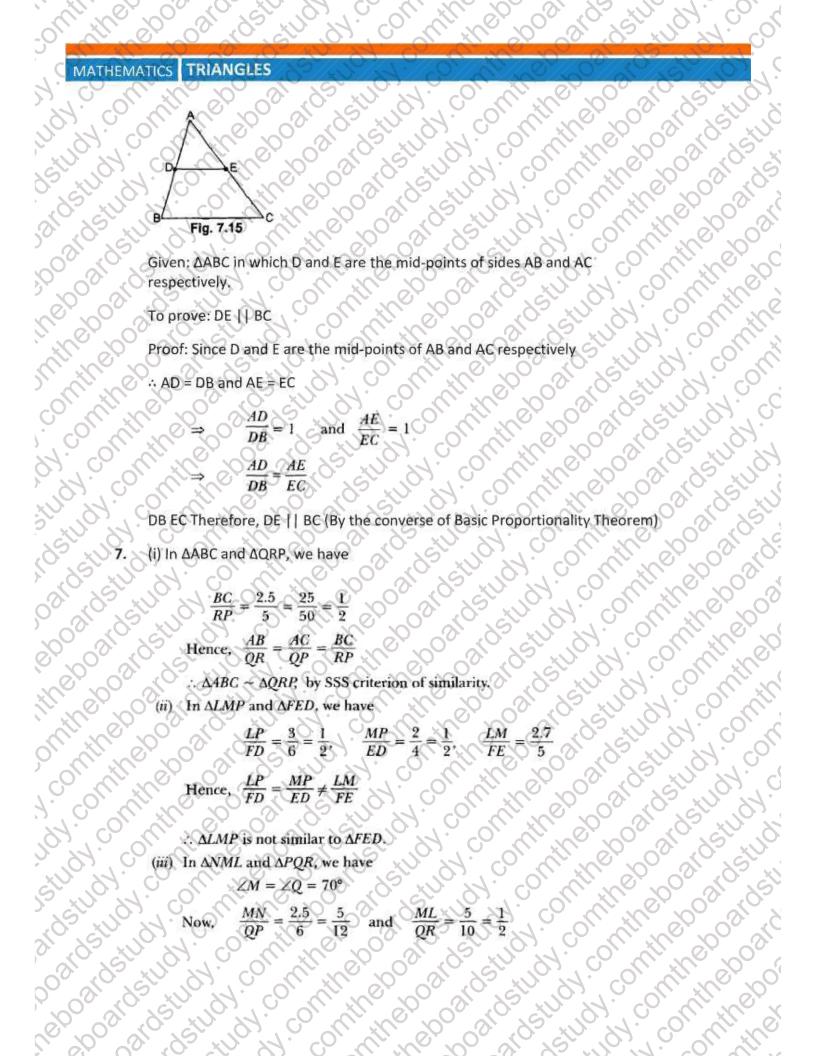
$$\frac{PD}{DO} = \frac{PF}{FR}$$
Now, from (i) and (ii), we have

$$\frac{PE}{EQ} = \frac{PF}{FR} \implies EF || QR$$
[Applying the converse of Basic Proportionality Theorem in ΔPOR]

6.



$$\frac{PE}{EQ} = \frac{PF}{FR} \implies EF ||QF|$$



$$\Rightarrow \frac{AD}{DB} = 1 \quad \text{and} \quad \frac{AE}{EC} = 1$$

$$\Rightarrow \frac{AD}{DB} = \frac{AE}{EC}$$

$$\frac{BC}{RP} = \frac{2.5}{5} = \frac{25}{50} = \frac{1}{2}$$

Hence,
$$\frac{AB}{QR} = \frac{AC}{QP} = \frac{BC}{RP}$$

$$\frac{LP}{FD} = \frac{3}{6} = \frac{1}{2}, \quad \frac{MP}{ED} = \frac{2}{4} = \frac{1}{2}, \quad \frac{LM}{FE} = \frac{2.7}{5}$$

Hence,
$$\frac{LP}{FD} = \frac{MP}{ED} \neq \frac{LM}{FE}$$

$$\angle M = \angle Q = 70^{\circ}$$

respectively.

To prove: DE
$$\{ \}$$
 BC

Proof: Since D and E are the mid-points of AB and AC respectively.

 \therefore AD = DB and AE = EC

$$\Rightarrow \frac{AD}{DB} = 1 \quad \text{and} \quad \frac{AE}{EC} = 1$$

$$\Rightarrow \frac{AD}{DB} = \frac{AE}{EC}$$

DB EC Therefore, DE $\{ \}$ BC (By the converse of Basic Proportionality Theorem).

7. (i) In \triangle ABC and \triangle QQR, we have

$$\frac{BC}{RP} = \frac{2.5}{5} = \frac{25}{50} = \frac{1}{2}$$

Hence, $\frac{AB}{QR} = \frac{AC}{QP} = \frac{BC}{RP}$

$$\therefore \triangle ABC + \triangle QRR$$
 by SSS criterion of similarity.

(ii) In \triangle LMP and \triangle FED, we have

$$\frac{LP}{FD} = \frac{3}{6} = \frac{1}{2}, \quad \frac{MP}{ED} = \frac{2}{4} = \frac{1}{2}, \quad \frac{LM}{FE} = \frac{2.7}{5}$$

Hence, $\frac{LP}{FD} = \frac{MP}{ED} \neq \frac{LM}{FE}$

$$\therefore \triangle LMP \text{ is not similar to } \triangle$$
FED.

(iii) In \triangle NML and \triangle PQR, we have
$$\angle M = \angle Q = 70^{\circ}$$
Now, $\frac{MN}{QP} = \frac{2.5}{6} = \frac{5}{12}$ and $\frac{ML}{QR} = \frac{5}{10} = \frac{1}{2}$

MATHEMATICS TRIANGLES

Hence,
$$\frac{MN}{QP} \neq \frac{ML}{QR}$$

ΔNML is not similar to ΔPQR.

8.

In ΔAOB and ΔCOD, we have
$$\angle AOB = \angle COD$$
 [Vertically opposite angles $\frac{AO}{OC} = \frac{BO}{OD}$ [Given]

So, by SAS criterion of similarity, we have

$$\angle AOB = \angle COD$$

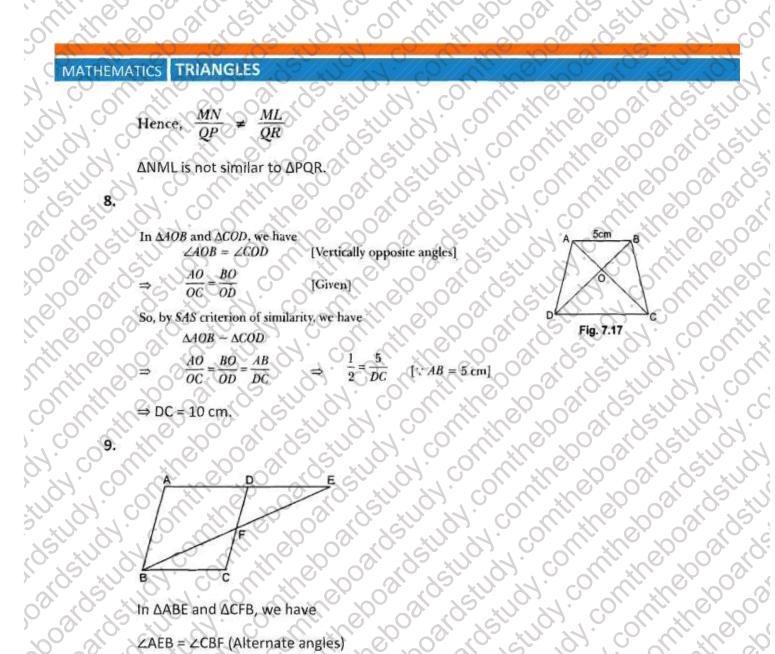
$$\Rightarrow \frac{AO}{OG} = \frac{BO}{OL}$$

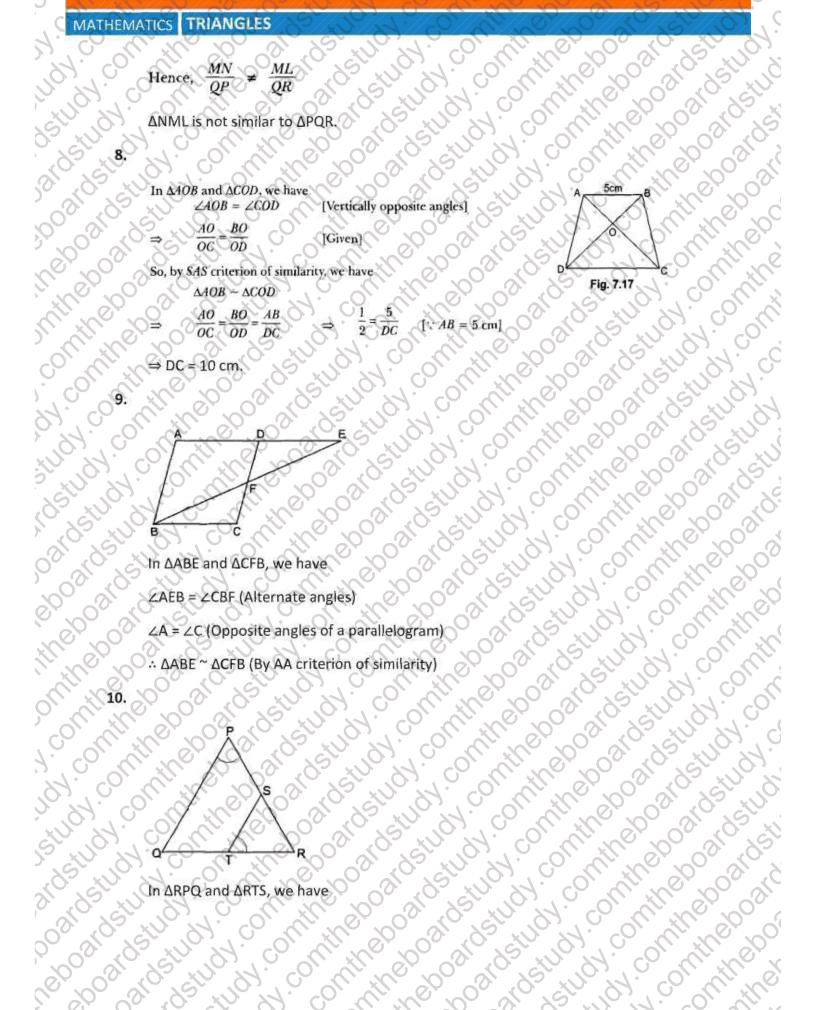
$$\Delta AOB \sim \Delta COD$$

$$\Rightarrow \frac{AO}{OC} = \frac{BO}{OD} = \frac{AB}{DC}$$

$$\Rightarrow \frac{1}{9} = \frac{5}{90}$$

$$[\cdot, AB = 5 \text{ cm}]$$





$$\angle RPQ = \angle RTS$$
 (Given)

$$\frac{AD}{DB} = \frac{AAND}{ANDC} ... (i)$$

$$\frac{AD}{DB} = \frac{AAND}{ANDC}$$

$$\Rightarrow 1 = \frac{AAND}{ANDC}$$

Given: A \triangle ABC in which D is the mid-point of AB and DE is drawn parallel to BC, which meets AC at E.

To prove: AE = EC

Proof: In \triangle ABC, DE || BC

: By Basic Proportionality Theorem, we have $\frac{AD}{DE} = \frac{AAND}{ANDC}...(i)$ Now, since D is the mid-point of AB $\Rightarrow AD = BD...(ii)$ Proom (i) and (ii), we have $\frac{AD}{DB} = \frac{AAND}{ANDC}$ $\Rightarrow 11 = \frac{AAND}{ANDC}$ Hence, E is the mid-point of
2. Given: ABCD is a trap-other at point O. ... of AB

... of AB

... $\frac{AAND}{ANDC}$ Hence, E is the mid-point of AC.

Niven: ABCD is a trapezium, in which ther at point O. AND Lace, E is the nother at point O.

To prove:

$$\frac{AO}{BO} = \frac{CO}{DO}$$

Construction: Through O, draw OE | AB i.e., OE | DC.

Proof: In $\triangle ADC$, we have $OE \parallel DC$ (Construction)

By Basic Proportionality Theorem, we have

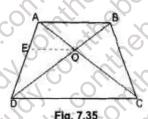
$$\frac{AE}{ED} = \frac{AO}{CO}$$

(Construction) Now, in $\triangle ABD$, we have $OE \parallel AB$

By Basic Proportionality Theorem, we have

$$\frac{ED}{AE} = \frac{DQ}{BO} \implies \frac{AE}{ED} = \frac{BO}{DO}$$

$$\frac{AO}{CO} = \frac{BO}{DO} \Rightarrow \frac{AO}{BO} = \frac{CO}{DO}$$



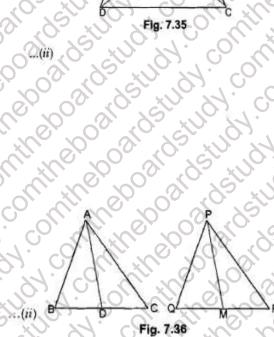
From (i) and (ii), we have $\frac{AO}{B}$ In AABD and APQM we have

$$\angle B = \angle Q (:: \triangle ABC \sim \triangle PQR) ... (i)$$

$$\frac{AB}{PQ} = \frac{BC}{QR} \qquad (\Box \Delta ABC \sim \Delta PQR)$$

$$\Rightarrow \frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM}$$



Offine Doardstudy. Control of the boardstudy. Co And could be a supplied to the supplied of the [Since AD and PM are the medians of \(\Delta ABC \) and \(\Delta PQR \) respectively]

From (i) and (ii), it is proved that

$$\Delta ABD \sim \Delta PQM$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM} \Rightarrow \frac{AB}{PQ} = \frac{AD}{PM}$$

In ΔEDC and ΔEBA we have

∠1 = ∠2 [Alternate angles]

 $\angle 3 = \angle 4$ [Alternate angles]

∠CED = ∠AEB [Vertically opposite angles]

.: ΔEDC ~ ΔEBA [By AA criterion of similarity] . Actual Contine book HIND COMINE BOOK DE

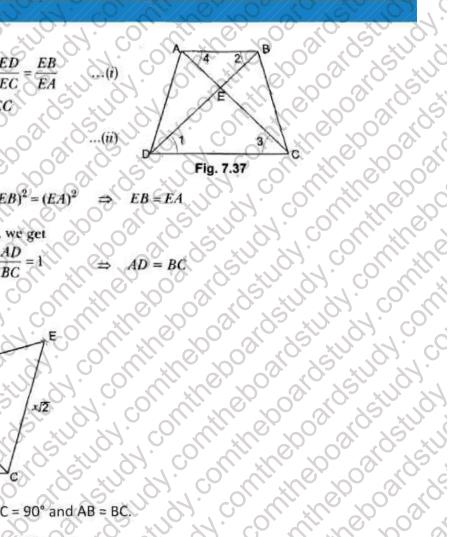
TRIANGLES

$$\Rightarrow \frac{ED}{EB} = \frac{EC}{EA} \Rightarrow \frac{ED}{EC} = \frac{EB}{EA}$$
It is given that $\triangle AED \sim \triangle BEC$

$$\therefore \frac{ED}{EC} = \frac{EA}{EB} = \frac{AD}{BC}$$
From (i) and (ii), we get
$$\frac{EB}{EA} = \frac{EA}{EB} \Rightarrow (EB)^2 = (EB)^2 =$$

It is given that
$$\triangle AED \Rightarrow \frac{ED}{EC} = \frac{EA}{EB} = \frac{AD}{BC}$$

From (i) and (ii), we get
$$\frac{EB}{EA} = \frac{EA}{EB} \Rightarrow \Rightarrow$$
Substituting $EB = EA$ in
$$\frac{EA}{EA} = \frac{AD}{BC} \Rightarrow \Rightarrow$$

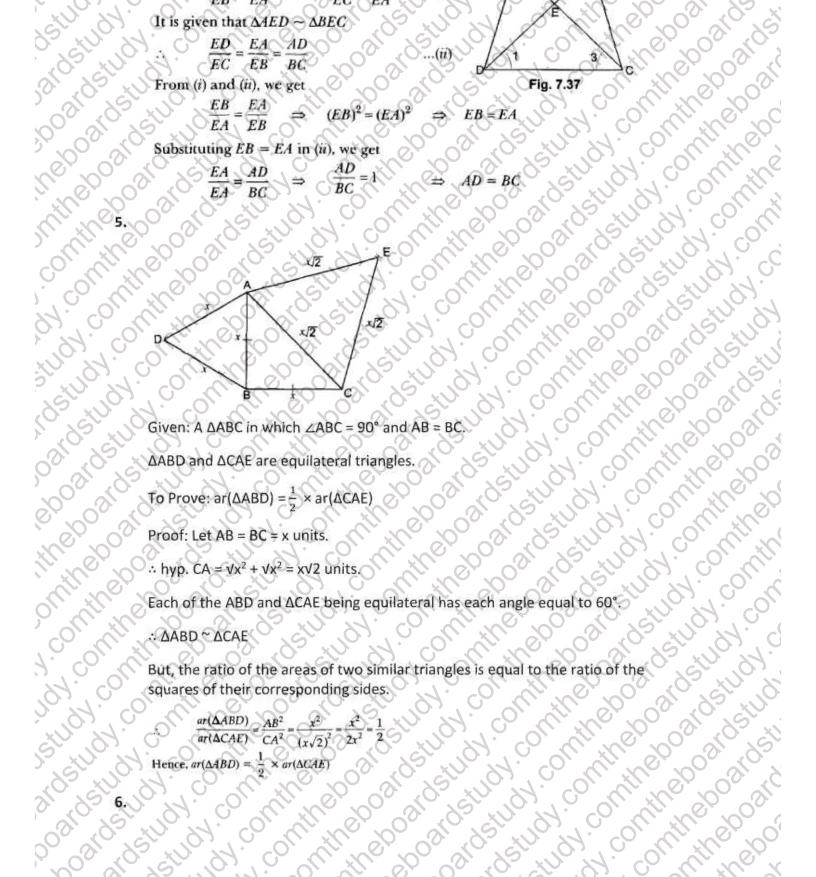


IANGLES

$$\frac{ED}{EB} = \frac{EC}{EA} \implies \frac{ED}{EC} = \frac{EB}{EA} \qquad ...(i)$$
en that $\triangle AED \sim \triangle BEC$

$$\frac{ED}{EC} = \frac{EA}{EB} = \frac{AD}{BC} \qquad ...(ii)$$
and (ii), we get
$$\frac{EB}{EA} = \frac{EA}{EB} \implies (EB)^2 = (EA)^2 \implies EB = EA$$
ting $EB = EA$ in (ii), we get
$$\frac{EA}{EA} = \frac{AD}{EB} \implies (AD) = BC$$

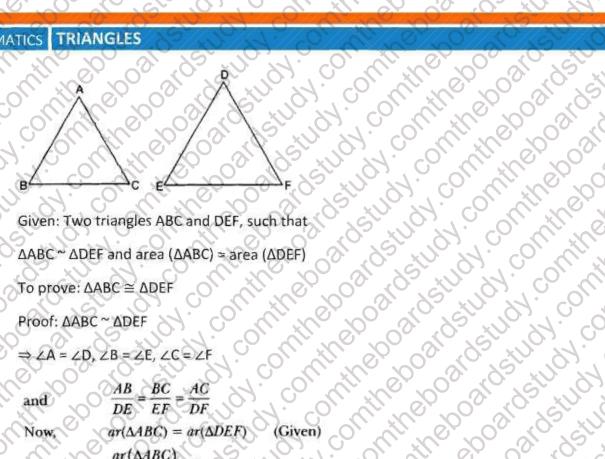
$$\frac{EA}{EA} \Rightarrow \frac{AD}{BC} \Rightarrow \frac{AD}{BC} = 1 \Rightarrow AD = BC$$



Journal of the County of the C of the al to the confidence of the co e rat. is e ria de la comilhe de la comilh

$$\frac{ar(\Delta ABD)}{ar(\Delta CAE)} = \frac{AB^2}{CA^2} = \frac{x^2}{(x\sqrt{2})^2} = \frac{x^2}{2x^2} = \frac{1}{2}$$

ahnaidstudy.co Actualy Comthe Cardstudy com



MATHEMATICS TRIANGLES

Given: Two triangles ABC and DEF, such that

$$\Delta ABC \sim \Delta DEF$$
 and area (ΔABC) \approx area (ΔDEF)

To prove: $\Delta ABC \cong \Delta DEF$

Proof: $\Delta ABC \simeq \Delta DEF$

$$\Rightarrow \angle A = \angle D$$
, $\angle B = \angle E$, $\angle C = \angle F$

and

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

Now. $ar(ABC) = ar(\Delta DEF)$ (Given)

$$ar(\Delta DEF) = 1$$

and

$$\frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = \frac{ar(\Delta ABC)}{ar(\Delta DEF)}$$
 (∴ $\Delta ABC \sim \Delta DEF$)

From (i) and (ii), we have

$$\frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = 1 \implies \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$$

$$AB = DE, BC = EF, AC = DF$$

$$\Delta ABC \cong \Delta DEF (By SSS criterion of congruency)$$
7. Let ΔABC and ΔPQR be two similar triangles. AD and PM are the medians of ΔABC and ΔPQR respectively.

$$\frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = 1 \implies \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$$

(Given) $= \frac{dC^2}{EF^2} = \frac{AC^2}{DF^2} = \frac{ar(\Delta ABC)}{ar(\Delta DEF)} \quad (: \Delta ARC \sim \Delta DEF)$ $= AB + \frac{BC^2}{DF^2} = \frac{AC^2}{DF^2} = 1 \quad \Rightarrow \quad \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$ AB = DE, BC = EF, AC = DF $= \Delta ABC \cong \Delta DEF (By SSS criterion of congruency)$ 7. Let ΔABC and ΔPQR be, two similar triangles. AF $= \Delta ABC \cong ADC = ACC$ $= ar(\Delta BC)$ $= ar(\Delta BC) = ACC$ $= ar(\Delta ABC)$ $= ar(\Delta BC) = ACC$ $= ar(\Delta ABC)$ $= ar(\Delta ABC) = ACC$ $= ar(\Delta ABC)$ $\frac{ABC}{ar(\Delta DEF)} (t: \Delta MBC \sim \Delta DEF)$ $DE^{\frac{1}{2}} = \frac{BC^{2}}{EF^{2}} = \frac{AC^{2}}{DF^{2}} = 1 \implies \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$ DE, BC = EF, AC = DF $\Delta ABC \cong \Delta DEF (By SSS criterion of congruency)$ 7. Let ΔABC and ΔPQR be two similar triangles. AD and PM are the medians of ΔABC and ΔPQR respectively.

To prove: $\frac{ar(ABC)}{ar(APQR)} = \frac{AD^{2}}{PM^{2}}$ Proof: Since $\Delta ABC = \Delta PQR$ $\frac{ar(ABC)}{ar(APQR)} = \frac{AB^{2}}{PQ^{2}} = \dots(i)$ Fig. 7. prove: $ar(\Delta ABC)$ = PProof: Since $\Delta ABC \sim \Delta PQR$ $ar(\Delta ABC)$ $ar(\Delta ABC)$

In AABD and APOM

$$\frac{AB}{PQ} = \frac{BD}{QM}$$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR}$$

$$\angle B = \angle Q$$

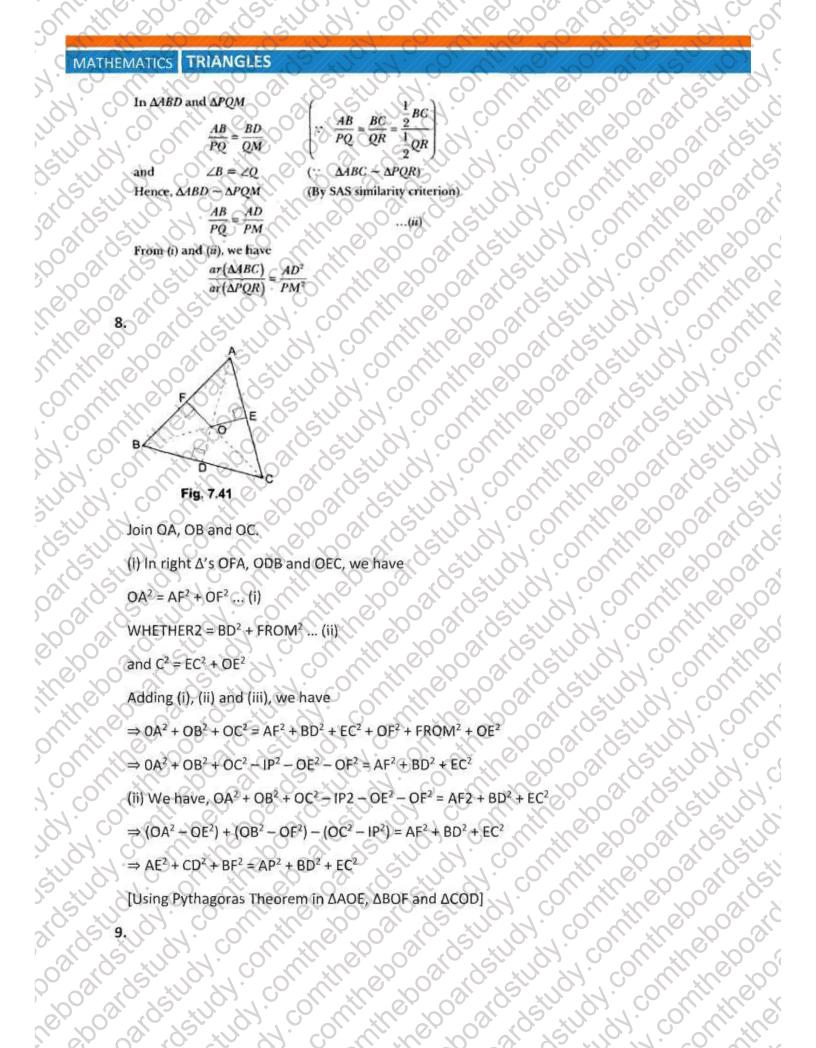
$$(:: \Delta ABC - \Delta PQR)$$

$$\frac{AB}{PQ} = \frac{AD}{PM}$$

Jen,

100,9

$$\frac{ar(\Delta ABC)}{ar(\Delta PQR)} \subseteq \frac{AD^2}{PM^2}$$



$$OA^2 = AF^2 + OF^2 ... (i)$$

and
$$C^2 = EC^2 + OE^2$$

$$\Rightarrow$$
 $OA^2 + OB^2 + OC^2 = AF^2 + BD^2 + EC^2 + OF^2 + FROM^2 + OE^2$

$$\Rightarrow$$
 0A² + OB² + OC² - IP² - OE² - OF² = AF² + BD² + EC²

Fig. 7.41

Join QA, OB and QC.

(i) In right
$$\Delta$$
's OFA, QDB and QEC, we have

 $OA^2 = AF^2 + OF^2$... (i)

WHETHER2 = $BD^2 + FROM^2$... (ii)

and $C^2 = EC^2 + OE^2$

Adding (i), (ii) and (iii), we have

 $\Rightarrow 0A^2 + 0B^2 + 0C^2 = AF^2 + BD^2 + EC^2 + 0F^2 + FROM^2 + 0E^2$
 $\Rightarrow 0A^2 + 0B^2 + 0C^2 = (IP^2 - 0E^2 - 0F^2 = AF^2 + BD^2 + EC^2$

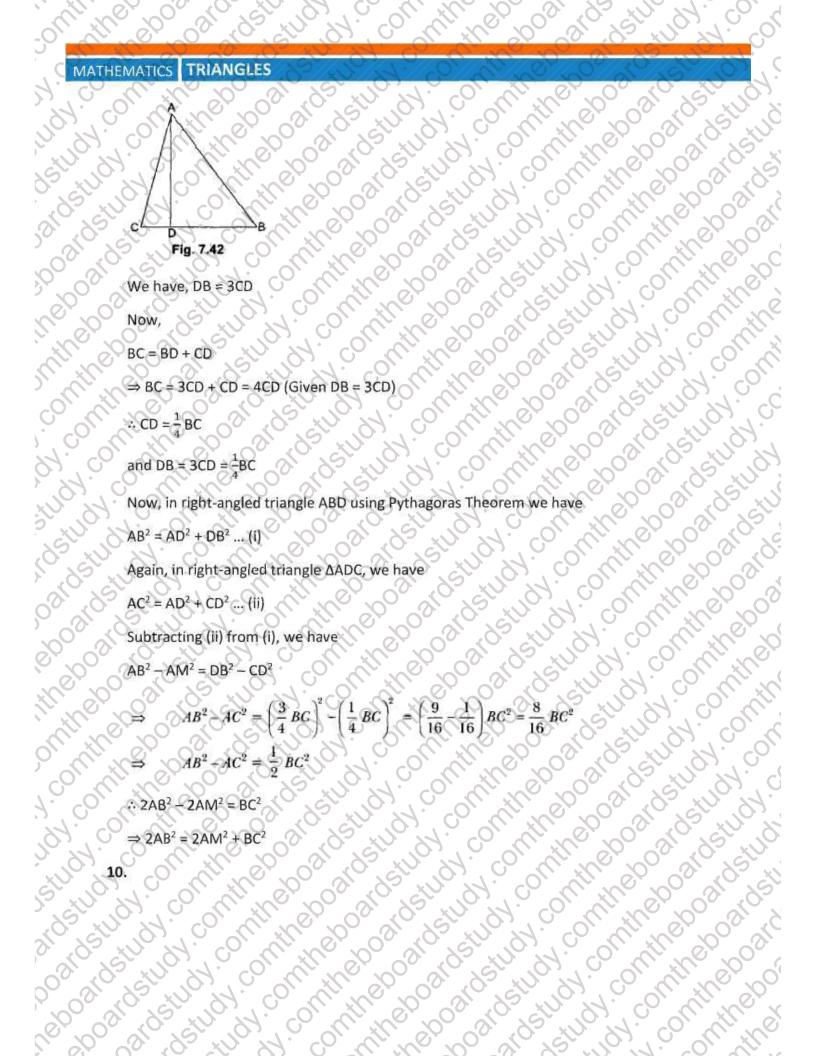
(ii) We have, $OA^2 + OB^2 + OC^2 - IP2 - OE^2 - OF^2 = AF^2 + BD^2 + EC^2$
 $\Rightarrow (OA^2 - OE^2) + (OB^2 - OF^2) - (OC^2 - IP^2) = AF^2 + BD^2 + EC^2$
 $\Rightarrow AE^2 + CD^2 + BF^2 = AP^2 + BD^2 + EC^2$

[Using Pythagoras Theorem in $\triangle AOE$, $\triangle BOF$ and $\triangle COD$]

9.

$$\Rightarrow$$
 (OA² - OE²) + (OB² - OF²) - (OC² - IP²) = AF² + BD² + EC²

$$\Rightarrow$$
 AE² + CD² + BF² = AP² + BD² + EC²



$$BC = BD + CD$$

$$\Rightarrow$$
 BC = 3CD + CD = 4CD (Given DB = 3CD)

$$\therefore CD = \frac{1}{4}BC$$

and DB = 3CD =
$$\frac{1}{4}$$
BC

$$AB^2 = AD^2 + DB^2 ... (i)$$

$$AC^2 = AD^2 + CD^2 ..., (ii)$$

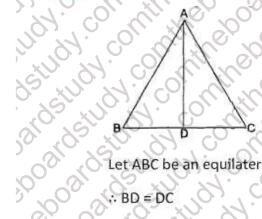
$$AB^2 - AM^2 = DB^2 - CD^2$$

$$\Rightarrow AB^2 AC^2 = \left(\frac{3}{4}BC\right)^2 - \left(\frac{1}{4}BC\right)^2 = \left(\frac{9}{16} - \frac{1}{16}\right)BC^2 = \frac{8}{16}BC^2$$

$$\Rightarrow AB^2 + AC^2 = \frac{1}{2}BC^2$$

$$\therefore 2AB^2 - 2AM^2 = BC^2$$

$$\Rightarrow 2AB^2 = 2AM^2 + BC^2$$



MATHEMATICS TRIANGLES

Let ABC be an equilateral triangle and let AD
$$\perp$$
 BC.

 \therefore BD = DC

Now, in right-angled triangle ADB, we have

$$AB^2 = AD^2 + BD^2 \text{ [Using Pythagoras Theorem]}$$

$$\Rightarrow AB^2 = AD^2 + \left(\frac{1}{2}BC\right)^2 \Rightarrow AB^2 = AD^2 + \frac{1}{4}BC^2$$

$$\Rightarrow AB^2 = AD^2 + \frac{AB^2}{4} \qquad [\because AB = BC]$$

$$\Rightarrow AB^2 - \frac{AB^2}{4} = AD^2 \Rightarrow \frac{3AB^2}{4} = AD^2 \Rightarrow 3AB^2 = 4AD^2$$

Case Study Answers:

1. Answer:

$$\begin{vmatrix}
1 & c & | 909 \\
ii & b & | SAS \end{vmatrix}$$

01.05.10	90° SAS	0
O Cill	4:3 C 11, 116, 10 St 12, 110, 17; COL VIII, 12	0
O ivo	The converse of Pythagoras theorem 48 cm ²	7
2. Answer:	12 110 17 : CO, Will 18 100 310 921, 110, 17 : COL	
Si 05 1/4 //	b) AB, AC	0

ovi ivo	d The converse of Pythagoras theorem
	a 48 cm ²
2. Answer	192 111 11. CO. Up 100 110 10 10 11 11
Up 700	in by AB, AC
.0	ii $AB^2 = BC^2 + CA^2$
41 100 i	ii 6.5m 1.00 00 00 00 00 00 00 00 00 00 00 00 00
	V D D D D D D D D D D D D D D D D D D D
0)	a 6.7m (approx)
2. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
5 10	
72/2/10	94 Coultine Good Sign Parish A Coultine Pool
XIO. 250	94. COLUITION OS SIGNESTINA COLUITION OS
210 721	einga, coultine pool of gennaa coultine po
000	
20,0,00	" GETTING COLULTINE POOR SIGNET TO STUDY COLUTING
1 1 (Y)	

- 2. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). mithe boards tudy rahnardstudy.co correctly comile IN COMITTE ON in countile postide contheboardsti at at a study. rde Hidy comine Cardefully com neboardstudy