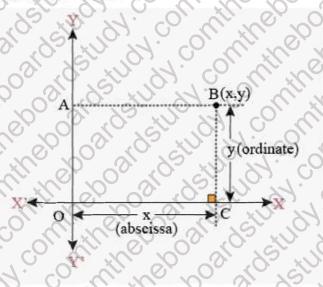


Coordinate Geometry

Coordinate axes:


Two perpendicular number lines intersecting at point zero are called coordinate axes The point of intersection is called **origin** and denoted by 'O'. The horizontal number line is the x-axis (denoted by X'OX) and the vertical one is the y-axis (denoted by Y'OY).

Cartesian plane is a plane formed by the coordinate axes perpendicular to each other in the plane. It is also called as xy plane.

The axes divide the Cartesian plane into four parts called the quadrants (one fourth part), numbered I, II, III and IV anticlockwise from OX.

Points on a Cartesian Plane

A pair of numbers locate points on a plane called the coordinates. The distance of a point from the y-axis is known as abscissa or x-coordinate. The distance of a point from the xaxis is called ordinates or y-coordinate.

Representation of (x,y) on the cartesian plane

3. Coordinates of a point:

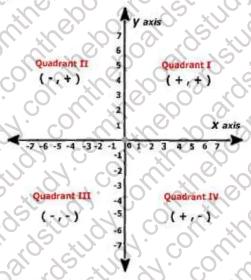
- The x-coordinate of a point is its perpendicular distance from y-axis, called abscissa.
- The y-coordinate of a point is its perpendicular distance from x-axis, called ordinate
- If the abscissa of a point is x and the ordinate of the point is y, then (x, y) is called the coordinates of the point.
- The point where the x-axis and the y-axis intersect is represented by the coordinate point (0, 0) and is called the origin.

4. Sign of the coordinates in the quadrants:

Sign of coordinates depicts the quadrant in which it lies

+) will lie in the first The point having both the coordinates positive i.e. of the form (+

hahoards


mardstu

ardstudi

"144 COL

" COLUM

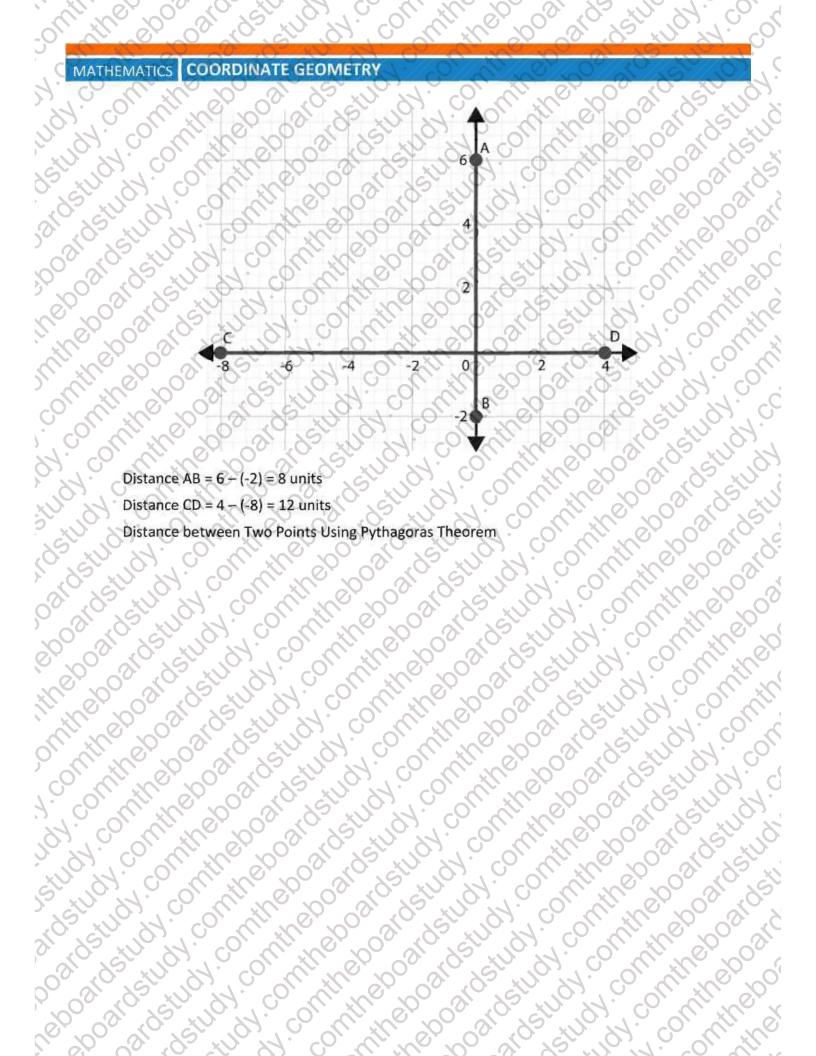
- The point having x-coordinate negative and y-coordinate positive i.e. of the form (-, +) will lie in the second quadrant.
- The point having both the coordinates negative i.e. of the form (-, -) will lie in the third quadrant.
- The point having x-coordinate positive and y-coordinate negative i.e. of the form (+,-) will lie in the fourth quadrant.

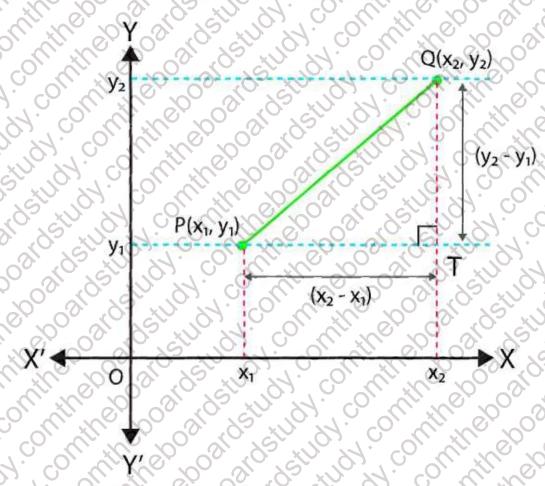
5. Coordinates of a point on the x-axis or y-axis:

The coordinates of a point lying on the x-axis are of the form (x, 0) and that of the point on the y-axis are of the form (0, 0)on the y-axis are of the form (0, y).

6. Distance formula

ahnardstudy.cominebook


The distance formula is used to find the distance between two any points say $P(x_1, y_1)$ and $Q(x_2, y_2)$ which is given by: $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$


- The distance of a point P(x, y) from the origin O(0, 0) is $OP\sqrt{x^2+y}$
- The points A, B and C are collinear if AB + BC = AC.

. Hellidy Comineboards tur

Distance between Two Points on the Same Coordinate Axes

Journal of High County of the Pool of the The distance between two points that are on the same axis (x-axis or y-axis), is given by the difference between their ordinates if they are on the y-axis, else by the difference · hahnaidstudy.comtheboat between their abscissa if they are on the x-axis. The contine boards till by cont · Milheboards Hildy contined And contine boards to de la contine de la co Curity Could Study Contin and study contine boards. in a string of the continuous of the continuous

Finding distance between 2 points using Pythagoras Theorem

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be any two points on the cartesian plane

Draw lines parallel to the axes through P and Q to meet at T

ΔPTQ is right-angled at T.

By Pythagoras Theorem

$$PQ^2 = PT^2 + QT^2$$

$$= (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

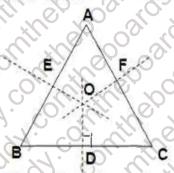
7. Determining the type of triangle using distance formula

- Three points A, B and C are the vertices of an equilateral triangle if AB = BC = CA.
- The points A, B and C are the vertices of an isosceles triangle if AB = BC or BC = CA or CA = AB.
- Three points A, B and C are the vertices of a right triangle if the sum of the squares of I'M' COMINEDOSII any two sides is equal to the square of the third side

TI COUNTHE POST

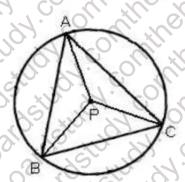
1cHINY COMIT

ardstudy.com 8. Determining the type of quadrilateral using distance formula how defined

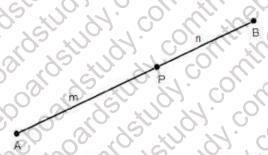

For the given four points A, B, C and D, if:

COORDINATE GEOMETRY **MATHEMATICS**

- AB = CD, BC = DA; $AC \neq BD \Rightarrow ABCD$ is aparallelogram.
- AB = BC = CD = DA; $AC \neq BD \Rightarrow ABCD$ is a rhombus
- AB = CD, BC = DA; $AC = BD \Rightarrow ABCD$ is a rectangle
- AB = BC = CD = DA; $AC = BD \Rightarrow ABCD$ is a square


9. Circumcentre of a triangle

The point of intersection of the perpendicular bisectors of the sides of a triangle is called the **circumcentre**. In the figure, O is the circumcentre of the triangle ABC.


Circumcentre of a triangle is equidistant from the vertices of the triangle. That is, P is the circumcentre of \triangle ABC, if PA = PB = PC.

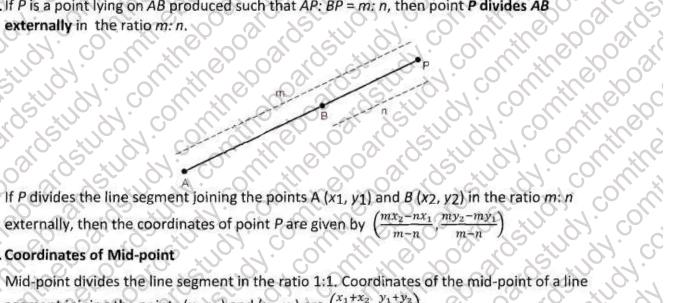
Moreover, if a circle is drawn with P as centre and PA or PB or PC as radius, the circle will pass through all the three vertices of the triangle. PA (or PB or PC) is said to be the circumradius of the triangle.

Section formula

If P is a point lying on the line segment joining the points A and B such that AP: BP = m: n. Then, we say that the point P divides the line segment AB internally in the ratio m; n.

mards

" COUNT


1144 CC

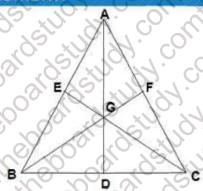
-mithe

y₁) and (x₂, Coordinates of a point which divides the line segment joining the points (x_1 ,

 y_2) in the ratio m: n internally are given by: $\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+my_1}{m+n}\right)$ This is known as the section formula. This is known as the mula.

11. If P is a point lying on AB produced such that AP: BP = m: n, then point P divides AB externally in the ratio m: n.

12. Coordinates of Mid-point


Lentroid of a triangle

The point of the three medians of a triangle is called the centroid. 38 Lethily Contine boards tudy contine boards J. A. Contheboards tudy contine to a retrieve the boards tudy contine to a retrieve to a retrieve the boards tudy contine to a retrieve the boards tudy contine to a retrieve to a retrieve to a retrieve to a retrieve to a r

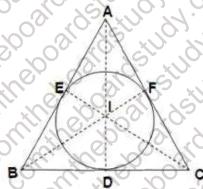
Ontine Do ards tudy. Contine Do ards tudy. C

13. Centroid of a triangle

Y. contine boards tudy con Coardstudy cominatoardstudy. C DORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDSTUDY COMINEDORIDATESTUDY COMINEDORIDATESTUDY COMINEDORIDATESTUDY COMINEDORIDATESTUDY COMINEDORIA COMINEDORIO CO ardstudy.comtheloardstu

In the figure, G is the centroid of the triangle ABC where AD, BF and CE are the medians through A, B and C respectively.

Centroid divides the median in the ratio of 2:1


14. Coordinates of the centroid

If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle ABC, then the coordinates of the centroid are given by G(x, y) =

15. Incentre of a triangle

The point of intersection of all the internal bisectors of the angles of a triangle is called the incentre.

It is also the centre of a circle which touches all the sides of a triangle (such type of a circle is named as the incircle)

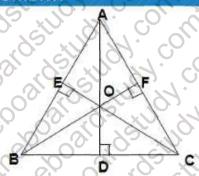
In the figure, I is the incentre of the triangle ABC.

16. Coordinates of incentre

If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle, then the coordinates of incentre are given by

17. Orthocentre of a triangle

. Hetildy comits


The point of intersection of all the perpendiculars drawn from the vertices on the opposite sides (called altitudes) of a triangle is called the Orthocentre which can be obtained by solving the equations of any two of the altitudes. mardstudy.com ard study comits Jehldy comined I.A. COMINEDOSI

mineboardstu

hahoaidstudy

-unither

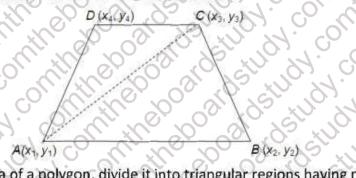
contine board

In the figure, O is the orthocentre of the triangle ABC.

- 18. If the triangle is equilateral, the centroid, the incentre, the orthocenter and the circumcentre coincides.
- 19. Orthocentre, centroid and circumcentre are always collinear, whereas the centroid divides the line joining the orthocentre and the circumcentre in the ratio of 2:1.

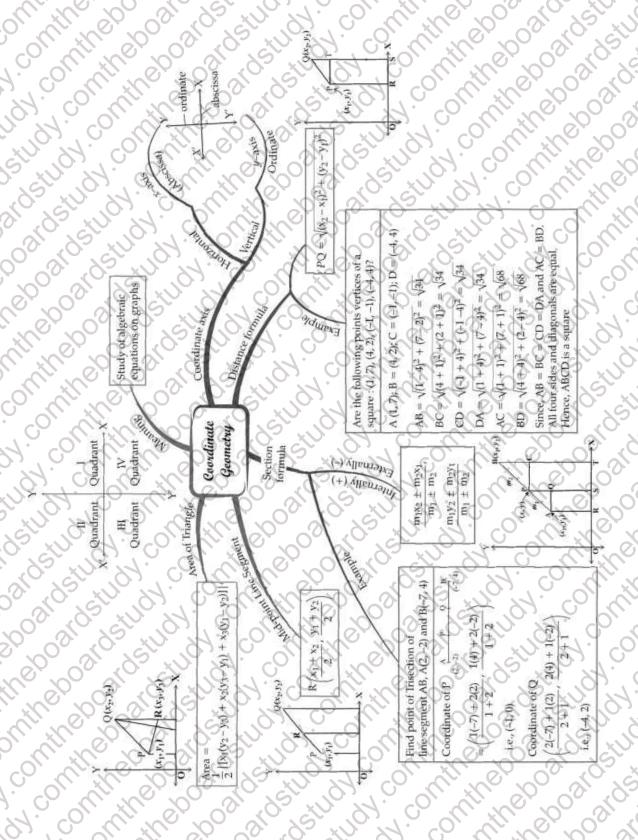
20. Area of a triangle

If A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of a triangle, then the area of triangle


ABC is given by
$$\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]$$

Three given points are collinear, if the area of triangle formed by these points is zero.

21. Area of a quadrilateral


Area of a quadrilateral can be calculated by dividing it into two triangles.

Area of quadrilateral ABCD = Area of $\triangle ABC$ + Area of $\triangle ACD$

Note: To find the area of a polygon, divide it into triangular regions having no common area, then add the areas of these regions. Pakusinship on the boards to him in the boards to h The continuous destudy. Continuous has have a continuous destudy. Juli 19 County Contine by Air Contin III. Shoaldstudy. Contheboardstudy. ENTAN COUNTREPOSITOSIUS NORMINEDO Jakindy Contine boards thy Contine and still a contine to a definite the still a still a

Lettidy contine boards tudy

STUDY.CO'

"I'M' COL

V COMIT

- (a) 2:3

 - (3,0) is 4 are
- (c) V5 units (d) 52" (a) 1:2
- Important Questions

 Multiple Choice questions

 1. The ratio in which (4,5) divides the line segment joining the points (2,3) and (7,8) is
 (a) 2:3
 (b)-3:2
 (c) 3:2
 (d) -2:3

 2. The values of x and y, if the distance of the point (x, y) from (-3,0) as well as from (3,0) is 4 are.
 (a) x = 1, y = 7
 (b) x = 2, y = 7
 (c) x = 0, y = ± v7

 3. The distance between the points (3,4) and (8,-6) is
 (a) 2v5 units
 (b) 3v5 units
 (c) v5 units
 (d) 5v5 units

 4. The ratio in which the x-axis divides the segment joining A(3,6) and B(12,-3) is
 (a) 1:2
 (b) 2:1
 (c) 2:1
 (d) -1:-1

 5. The horizontal and vertical lines drawn to determine the position of a point in a Cartesian plane are called
 (a) intersecting lines
 (b) Transversals ordefully continuous defully. o. The horizontal and vertic Cartesian plane are called (a) Intersecting 19 es dra es witheboardstudy in contine boards till mandstudy.com/the e the contine boards tudy

 - and stud ahnardsti

- (c) Perpendicular lines
- (d) X-axis and Y-axis
- Seilly in the board of the second of the sec My Colling of the control of the con 6. The mid point of the line segment joining A(2a,4) and B(-2,3b) is M (1,2a + 1). The values of a and b are he limited the limited that the limited the limited that ..., (-2, 7) and (3, -3) are

 ...es of an equilateral triangle

 (b) collinear

 (c) vertices of an isosceles triangle

 'd) none of these

 The line $3x + y - 9 = 0^{-p^2}$? ratio

 3:4 ingh.cowinepo cornitheboards
- (b) 1.1
- (c) -2,-2 S
- onthe boards that contine of socieles triangle

 and none of these

 8. The line 3x + y - 9 = 0 divides the line joining the points (1, 3) and (2, 7) internally in the ratio

 (a) 3:4(b) 3:2(c) 2:3(d) 4:3

 - (d) 4 : 3

 9. The ordinate of a point is twice its abscissa. If its distance from the point (4,3) is \$\forall (1,2)\$ or (3,6)

 10) (1,2) or (3,5)

 10) (2,1) or (3,6)

 11) (2,1) or (6,3).

 The mid-point of the line segment joining the 4,7-6) ...s distance from the point (4,3) is

 or (3,6)

 (d) (2,1) or (6,3).

 10. The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is

 \((-4, -6)
 - (d) (2,1) or (6,3)
 - annardsti

- (b) (2, 6)
- (c) (-4, 2)
- (d) (4, 2)

poardstudi

Mildy contine book oardstudy.com , dstudy contine Very Short Questions:
What is the area of ***

1)? ineposite, What is the area of the triangle formed by the points 0 (0, 0), A (-3, 0) and B (5,

Y. contineboaro

- Milhebo2 If the centroid of triangle formed by points P (a, b), Q (b, c) and R (c, a) is at the origin, what is the value of a + b + c?
 - AOBC is a rectangle whose three vertices are A (0, 3), 0 (0, 0) and B (5, 0). Find the length of its diagonal.

 - 5.

 - If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?

 If the points A (1, 2), B (0, 0) and C (a, b) are collingbetween a and b?

 - Find the ratio in which the line segment joining the points (-3, 10) and (6, -8)is divided by (-1, 6).
 - The coordinates of the points P and Q are respectively (4, -3) and (-1, 7). Find the abscissa of a point R on the line segment PQ such that

Short Questions:

29rdstud

, deflidy.c

HILM COR

- Find the values of x for which the distance between the points P (2, -3) and Q (x, 5) is 10.

 What is the distance between the points P (2, -3) and Q
- et ildy comittee boardstud study. 2

countrep,

An COURTH

i. A. Contineboardst in comithe board In Fig. 6.8, if A(-1, 3), B(1, -1) and C (5, 1) are the vertices of a triangle ABC, what is the length of the median through vertex A? and study.co maidstudy rahoardsti

mineboar

COORDINATE GEOMETRY **MATHEMATICS**

- Find the ratio in which the line segment joining the points P (3, -6) and Q (5,3) is divided by the x-axis.
- Show that ΔABC, where A(-2, 0), B(2, 0), C(0, 2) and APQR where P(-4, 0), Q(4, 0), R(0,4) are similar triangles.

Show that $\triangle ABC$ with vertices A(-2, 0), B(0, 2) and C(2, 0) is similar to $\triangle DEF$ with vertices D(-4, 0), F(4,0) and E(0, 4).

[ΔPQR is replaced by ΔDEF]

- Point P (0, 2) is the point of intersection of y-axis and perpendicular bisector of line segment joining the points, A (-1, 1) and B (3, 3). State true or false and justify your answer.
- Determine, if the points (1, 5), (2, 3) and (-2, -11) are collinear.
- 10. Find the distance between the following pairs of points:

(i) (-5, 7), (-1, 3)

(ii) (a, b), (-a, -b)

Long Questions:

- Saldstudy! Find the value of 'k", for which the points are collinear: (7, -2), (5, 1), (3, k).
- Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0, -1), (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

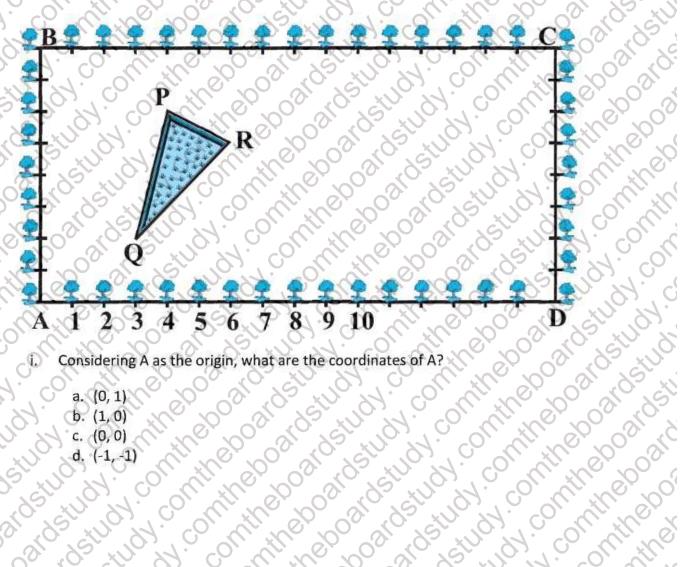
,03rdstuč

- Find the area of the quadrilateral whose vertices, taken in order, are (-4, -2), (-3, -5), (3, -2) and (2, 3)
- A median of a triangle divides it into two triangles of equal areas. Verify this result for ΔABC whose vertices are A (4,-6), B (3, -2) and C (5, 2).
- Find the ratio in which the point P (x, 2), divides the line segment joining the points A (12, 5) and B (4, -3). Also find the value of x.
- I AN COMINE DO BINGS! If A (4, 2), B (7, 6) and C (1, 4) are the vertices of a \triangle ABC and AD is its median, prove that the median AD divides into two triangles of equal areas.
- If the point A (2, -4) is equidistant from P (3, 8) and Q (-10, y), find the values

ardstud

ACHINAY.

maidsi


hahoal

of y. Also find distance PQ.

- The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point Care (0, -3). The origin is the mid-point of the base. Find the coordinates of the points A and B. Also find the coordinates of another point D such that BACD is a rhombus.
- Prove that the area of a triangle with vertices (t, t-2), (t + 2, t + 2) and (t + 3, t)is independent of t.
- The area of a triangle is 5 sq units. Two of its vertices are (2, 1) and (3, -2). If the third vertex is $(\frac{1}{2}, y)$, find the value of y.

Case Study Qurstions:

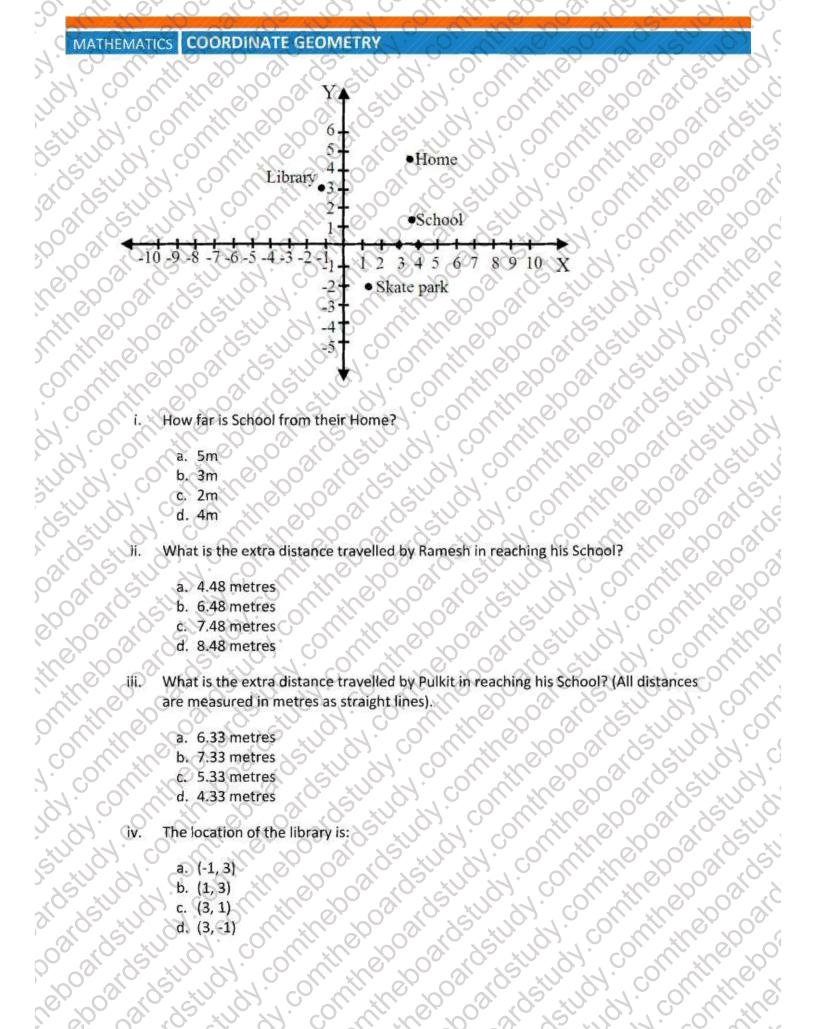
1. The Class X students of a secondary school in Krishinagar have been allotted a rectangular plot of land for their gardening activity. Sapling of Gulmohar is planted on the boundary of the plot at a distance of 1m from each other. There is a triangular grassy lawn inside the plot as shown in Fig. The students have to sow seeds of flowering plants on the remaining area of the plot.

Considering A as the origin, what are the coordinates of A? with e board study. Co contineboardstudi

in coultheposides!

- a. (0, 1)
- b. (1,0)

ii. What are the coordinates of P? a. (4, 6) b. (6, 4) c. (4, 5)


- ...ie coordinates of D?

 (16, 0)
 (b. (0, 0)
 (c. (0, 16)
 (d. (16, 1))

 v. What are the coordinates of P if D is taken as the origin?

 a. (12, 2)
 (b. (+12, 6)
 (c. (12, 3)
 (d. (6, 10))

 2. Two brothers Ramesh and Pulkit were at home and builting the coordinates of P if D is taken as the origin? Tille Do ard study contine boards tudy contine LILLY CORNING DO BIOSTUDY Juliling of Ostroy. Continue of Ostroy. Contin J. Actindy. Contine boards to delivery. Contine by the real of the boards to the board Wallishigh, outline to Style of the Style of divertify, on the boards they continue to the boards they can be a continued to the boards the continued to the boards they can be a continued to the boards th Reposition of the board of the

- a. 4.48 metres
 b. 6.48 metres
 c. 7.48 metrer
 d. 8.48 r 4. Columbay
- a. (-1, 3 b. (1, 3) c. (3, 1)

 - c. (3, 1) d. (3, 1)

30 ardstudy.co COORDINATE GEOMETRY

- indestudy continebook Study contine board Joandstudy.comitine Assertion Reason Questions

 1. Directions: Each of these guestions (R). Each of these guestions correct answers
 - a. A is true, R is true; R is a correct explanation for A.
 - A is true, R is true; R is not a correct explanation for A.
- 2. Directions: Each of these questions contains two statements: Assertion [A] and Reason [R]. Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the codes [a], [b], [cl and r...

 a. A is true, R is true: P in the codes [a], [b], [cl and r... John Countre post of stroy Countre bost of s Y. contine boards tudy con ardstudy.cominepoardstu 35th dy contine boards tudy contine boards tud Ontine Do ards tudy contine boards tudy contine boards tudy contine boards tudy.
- b. A is true, R is true; R is not a correct explanation for A.

 c. A is true; R is False.

 d. A is false. Nego and study. contine to an analy contine to a study. Something the study of the study. The study is the study of the study of the study of the study. The study of the stud Oldinging Counting to the boards in the continue of the contin OOAL CHACK IN THE PORT OF THE PROPERTY OF THE

- Answer Key
 Choice questions
 1. (a) 2:3

 2. (d) x = 0, y = ± √7

 3. (d) 5√5 units

 4. (c) 2:1

 5. (d) X-axis and Y-axis

 6. (d) 2,2

 7. (b) collinear

 8. (a) 3: 4

 9. (a) (1,2) or (?²

 10. (c) (-4, -²

 Very 5.

centroid of
$$\triangle PQR = \left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right)$$

Given
$$\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) = (0,0)$$

$$\Rightarrow a+b+c=0$$

Multiple Choice questions-

1. (a) 2:3
2. (d)
$$x = 0$$
, $y = \pm \sqrt{7}$,
3. (d) 505 units.
4. (e) 2:1
5. (d) X-axis and Y-axis
6. (d) 2,2
7. (b) collinear
8. (a) 3:4
9. (a) $(3,2)$ or $(3,5)$
10. (c) $(-4,2)$

Very Short Answer:
1. Area of $\Delta DAB = \frac{1}{2}[0(0-1) - 3(0-0) + 5(0-0)] = 0$
 $\Rightarrow Siven points are collinear$
2.

• cuttorial of $\Delta^D QR = \left(\frac{a + b + c}{3}, \frac{b + c + a}{3}\right)$
Given $\left(\frac{a + b + c}{3}, \frac{b + c + a}{3}\right) = (0,0)$
 $\Rightarrow a + b + c = 0$
3.

Length of diagonal $= AB = \sqrt{(5-0)^2 + (0-3)^2} = \sqrt{25 + 9} = \sqrt{34}$
4. Since $(3, a)$ lies on the line $(2x - 3y = 5)$
Then $2(3) - 3(a) = 5$

Then
$$2(3) - 3(a) = 5$$

$$-3a = 5 - 6$$

$$-3a = -1$$

$$\Rightarrow a = \frac{1}{2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5-0)^2 + (0-5)^2}$$

$$= \sqrt{25+25} = \sqrt{50} = 5\sqrt{2} \text{ units}$$

$$x_2 = 0, y_2 = 0$$

MATHEMATICS COORDINATE GEOMETRY

$$3a = 5 - 6$$

$$-3a = -1$$

$$\Rightarrow a = \frac{2}{3}$$
5. (Here $x_1 = 0$, $y_2 = 5$, $x_2 = -5$ and $y_2 = 0$)
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5 - 0)^2 + (0 - 5)^2}$$

$$= \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \text{ units}$$
6. Here $x_1 = -6$, $y_1 = 8$

$$x_2 = 0$$
, $y_2 = 0$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{10 - (-6)^2 + (0 - 8)^2} = \sqrt{(6)^2 + (-8)^2} = \sqrt{36 + 64}$$

$$= \sqrt{100} = (10 \text{ units})$$
7. Using distance formula
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \text{distance given}$$

$$\sqrt{(4 - 1)^2 + (k - 0)^2} = 5$$

$$9 + k^2 = 25 \Rightarrow k^2 = 16$$

MATHEMATICS COORDINATE GEOMÉTRY

$$3a = 5 + 6$$

$$-3a = 1$$

$$\Rightarrow a - \frac{3}{3}$$
5. Here $x_1 = 0$, $y_1 + 5$, $x_2 = 5$ and $y_2 = 0$).

$$d = \sqrt{(x_2 - x_1)^2 + (y_1 - y_1)^2}$$

$$= \sqrt{-5 - 0^2 + (0 - 5)^2}$$

$$= \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \text{ units}.$$
6. Here $x_1 = -6$, $y_1 = 8$

$$x_2 = 0$$
, $y_2 = 0$

$$d = \sqrt{(x_2 - x_1)^2 + (y_1 - y_1)^2}$$

$$= \sqrt{10 - (-6)^2 + (0 - 8)^2} = \sqrt{(6)^2 + (-8)^2} = \sqrt{36 + 64}$$

$$= \sqrt{100} = 10 \text{ units}.$$
7. Using distance formula

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 6$$

$$y = 4k^2 = 25 \implies k^2 = 16$$

$$\Rightarrow k = \frac{1}{2}4$$
8. Points A, B and C are collinear
$$\Rightarrow 1(0 - b) + 0 (b - 2) + 3(2 - 0) = 0$$

$$\Rightarrow -5 + 2a = 0 \text{ or } 2a = b$$
9. In Fig. 6.6, let the point $P(-1, 6)$ divides the line joining $A(-3, 10)$ and $B(6, -8)$ in the ratio $k + 1$

then, the coordinates of P are $\left(-\frac{(k - 3)^2 - 3k + 10}{k + 1}\right)$
But, the coordinates of P are $\left(-\frac{(k - 3)^2 - 3k + 10}{k + 1}\right)$
But, the coordinates of P are $\left(-\frac{(k - 3)^2 - 3k + 10}{k + 1}\right)$
But, the coordinates of P are $\left(-\frac{(k - 3)^2 - 3k + 10}{k + 1}\right)$

$$\Rightarrow$$
 1(0 - b) + 0 (b - 2) + a(2 - 0) = 0

$$\Rightarrow$$
 -b + 2a = 0 or 2a = b

then, the coordinates of
$$P$$
 are $\left(\frac{6k-3}{k+1}, \frac{-8k+10}{k+1}\right)$

MATHEMATICS COORDINATE GEOMETRY

$$P(-1,6) \\
Fig. 6.8 \\
S(4-1) = -1 \\
S$$

$$\frac{PQ}{PR} = \frac{5}{3} \Rightarrow \frac{PQ - PR}{PR} = \frac{5 - 3}{3}$$

$$\Rightarrow \frac{RQ}{PR} = \frac{2}{3}$$

Abscissa of
$$R = \frac{3 \times (-1) + 2 \times 4}{3 + 2} = \frac{-3 + 8}{5} = 1$$

$$\sqrt{(-3-x)^2+(4-0)^2}=\sqrt{(2-x)^2+(5-0)^2}$$

$$9 + x^2 + 6x + 16 = \sqrt{4 + x^2 - 4x + 25}$$

$$\Rightarrow$$
 $x^2 + 6x + 25 = x^2 - 4x + 29$ \Rightarrow $10x = 4$ or $x = \frac{4}{10} = \frac{2}{5}$

Distance between the given points =
$$\sqrt{(x-2)^2 + (5+3)^2}$$

$$\Rightarrow 10 = \sqrt{x^2 + 4 - 4x + 64}$$

$$\Rightarrow 100 = x^2 - 4x + 68$$

$$\Rightarrow x^2 - 4x - 32 = 0$$

$$\Rightarrow x^2 - 8x + 4x - 32 = 0$$

$$\Rightarrow (x-8)(x+4) = 0 \Rightarrow x = 8, -4$$

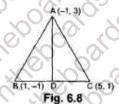
$$\Rightarrow$$
 $100 = x^2 - 4x + 68$

$$\Rightarrow \qquad \qquad x^2 - 4x - 32 = 0$$

$$x^2 - 8x + 4x - 32 = 0$$

$$\Rightarrow (x-8)(x+4)=0 \Rightarrow x = 8, -4$$

68 + 64 $10\cos 30^{9}^{2} + (10c)$ $\frac{10\cos 30^{9}^{2} + 10^{c}}{3^{9}}$


$$= \sqrt{100\cos^2 30^\circ + 100\cos^2 60^\circ}$$

$$= \sqrt{100} \left(\frac{\sqrt{3}}{2} \right)^2 + \left(\frac{1}{2} \right)^2 = \sqrt{100} \left(\frac{3}{4} + \frac{1}{4} \right) = \sqrt{100} = 10 \text{ units}$$

Coordinates of the mid-point of
$$BC = \left(\frac{1+5}{2}, \frac{-1+1}{2}\right) = (3,0)$$

Length of the median through
$$A = \sqrt{(3+1)^3 + (0-3)^2}$$

$$= \sqrt{16+9} = \sqrt{25} = 5 \text{ units.}$$

Then, the point of division is
$$\begin{cases} 5\lambda + 3 & 3\lambda - 6 \\ \lambda + 1 & \lambda + 1 \end{cases}$$

$$\frac{3\lambda - 6}{\lambda + 1} = 0 \quad \text{or} \quad 3\lambda = 6 \quad \text{or} \quad \lambda = 2$$

Distance between the given points
$$= \sqrt{(3-2)^2 + (5+3)^2}$$

$$= (10 = \sqrt{x^2 + 4 - 4x + 64})$$

$$= (100 = x^2 - 4x + 68)$$

$$= (x^2 + 4x + 32) = 0$$

$$= (x + 8)(x + 4) = 0 \Rightarrow x = 8, 4$$
3.

Distance between the given points $= \sqrt{(0-10\cos 30)^2 + 0.0\cos 60^2 - 0)^2}$

$$= \sqrt{(100\cos^2 30^2 + 100\cos^2 60^2)}$$

$$= \sqrt{(10$$

MATHEMATICS COORDINATE GEOMETRY

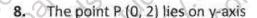
$$AB = \sqrt{(2+2)^2 + 0} = \sqrt{16} = 4$$

$$BC = \sqrt{(0-2)^2 + (2-0)^2} = \sqrt{8} = 2\sqrt{2}$$

$$CA = \sqrt{(-2-0)^2 + (0-2)^2} = \sqrt{8} = 2\sqrt{2}$$

$$PQ = \sqrt{(4+4)^2 + 0} = \sqrt{64} = 8$$

$$QR = \sqrt{(0-4)^2 + (4-0)^2} = \sqrt{32} = 4\sqrt{2}$$


$$RP = \sqrt{(-4-0)^2 + (0-4)^2} = \sqrt{32} = 4\sqrt{2}$$

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = \frac{1}{2}$$

$$\Rightarrow \Delta ABC \sim \Delta PQR$$
8. The point P (0, 2) lies on y-axis
$$Also, AP = \sqrt{(0+1)^2 + (2-1)^2} = \sqrt{2}$$

$$RP = \sqrt{(-4-0)^2 + (0-4)^2} = \sqrt{32} = 4\sqrt{2}$$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = \frac{1}{2}$$

MATHEMATICS COOKDINATE GEOMETRY

$$AB = \sqrt{(2+2)^2 + 0} = \sqrt{16} = 4$$

$$BC = \sqrt{(0-2)^2 + (2-0)^2} = \sqrt{8} = 2\sqrt{2}$$

$$CA = \sqrt{(-2-0)^2 + (0-2)^2} = \sqrt{8} = 2\sqrt{2}$$

$$PQ = \sqrt{(4+4)^2 + 0} = \sqrt{64} = 8$$

$$QR = \sqrt{(0-4)^2 + (4-0)^2} = \sqrt{32} = 4\sqrt{2}$$

$$RP = \sqrt{(-4-0)^2 + (0-4)^2} = \sqrt{32} = 4\sqrt{2}$$

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = \frac{1}{2} \implies \Delta ABC - \Delta PQR$$

8. The point P (0, 2) lies on y-axis

Also, $AP = \sqrt{(0+1)^2 + (2-1)^2} = \sqrt{2}$

$$BP = \sqrt{(0-3)^2 + (2-3)^2} = \sqrt{9+1} = \sqrt{10}$$

$$AP \neq BP$$

$$\therefore P(0, 2) \text{ does not lie on the perpendicular bisector of AB. So, given statement is false.}$$
9. Let A (1, 5), B (2, 3) and C (-2, -11) be the given points. Then we have

Hill board of the second of th in the boards that it is in the boards. It is in th

$$QR = \sqrt{(0-4)^{2} + (4-4)^{2}} + \sqrt{32} = 4\sqrt{2}$$

$$RP = \sqrt{(-4-0)^{2} + (0-4)^{2}} + \sqrt{32} = 4\sqrt{2}$$

$$RP = \sqrt{(-4-0)^{2} + (0-4)^{2}} + \sqrt{32} = 4\sqrt{2}$$

$$RP = \sqrt{RP} = \frac{BC}{QR} = \frac{A}{RP} = \frac{1}{2} \implies \Delta MBC - \Delta PQR$$
8. The point P (0, 2) lies on y-axis
$$Also, \quad AP = \sqrt{(0-4)^{2} + (2-3)^{2}} = \sqrt{9+1} = \sqrt{10}$$

$$AP \neq BP \qquad \therefore P(0, 2) \text{ does not lie on the perpendicular bisector of AB. So, given statement is failse.}$$
9. Let A (1, 5), B (2, 3) and C (-2, -11) be the given points. Then we have
$$AB = \sqrt{(2-1)^{2} + (3-5)^{2}} = \sqrt{11+4} = \sqrt{5}$$

$$BC = \sqrt{(-2-2)^{2} + (-11-3)^{2}} = \sqrt{16+196} = \sqrt{4 \times 53} = 2\sqrt{53}$$

$$AC = \sqrt{(-2-1)^{2} + (-11-5)^{2}} = \sqrt{9+256} = \sqrt{265}$$
Clearly, AB + BC ≠ AC
$$\therefore A, B, C \text{ are not collinear.}$$
10. (i) Let two given points be A (-5, 7) and B (-1, 3).

Thus, we have $x_1 = .5$ and $x_2 = .1$

$$y_1 = 7 \text{ and } y_2 = 3$$

$$AB = \sqrt{(-1+5)^{2} + (3-7)^{2}} = \sqrt{(4)^{2} + (-4)^{2}} = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2} \text{ unifs.}$$
Lorg Answer:

1. Let the given points be

10. (i) Let two given point.

Thus, we

$$y_1 = 7$$
 and $y_2 = 3$

10. (i) Let two given points be A (-5, 7) and B (-1, 3).

Thus, we have
$$x_1 = -5$$
 and $x_2 = -1$

$$y_1 = 7 \text{ and } y_2 = 3$$

$$\therefore AB = \sqrt{(x_3 - x_1)^2 + (y_2 - y_1)^2}$$

$$\Rightarrow AB = \sqrt{(-1 + 5)^2 + (3 - 7)^2} = \sqrt{(4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units.}$$

Long Answer:

ahnardstud

$$A(x_1, y_1) = (7, -2), B(x_2, Y_2) = (5, 1) \text{ and } C(x_3, y_3) = (3, k)$$

$$\Rightarrow 12 [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$\Rightarrow$$
 x1(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) = 0

$$\Rightarrow$$
 7(1 - k) + 5(k + 2) + 3(-2 - 1) = 0

$$\Rightarrow$$
 7 - 7k + 5k + 10 - 9 = 0

$$\Rightarrow$$
 -2k + 8 = 0

$$\Rightarrow$$
 2k = 8

$$\Rightarrow k = 4$$

MATHEMATICS COORDINATE GEOMETRY

A [x1, y2] = (7, -2), B [x2, y2] = (5, 3) and C (x2, y2) = (3, 4)

Since these points are collinear therefore area (
$$\Delta$$
ABC) = 0

⇒ 12 [81(y2-y2) + x6(y3-y2)] + x1(y2-y2)] = 0

⇒ x1(y2-y2) + x6(y3-y2) + x1(y3-y2) = 0

⇒ x1(y2-y2) + x6(y3-y2) + x1(y3-y2) = 0

⇒ 7(1-k) + 5(k+2) + 3(-2-1) = 0

⇒ 7-7 x + 5 k + 10 - 9 = 0

⇒ 2k + 8

⇒ k = 4

Hence, given points are collinear for k = 4.

2. Let A (x2, y2) = (0, -21), B (x2, y2) = (2, 1), C (x2, y2) = (0, 3) be the vertices of Δ ABC.

Now, let P; Q; R big the mid-points of BC; CA and AB, respectively.

So, coordinates of P; Q; R are

$$P = \left(\frac{2+0}{2} \cdot \frac{1+3}{2}\right) = (1, 2)$$

$$Q = \left(\frac{0-0}{2} \cdot \frac{3-1}{2}\right) = (10, 3)$$

$$R = \left(\frac{2+0}{2} \cdot \frac{1-3}{2}\right) = (10, 3)$$
Therefore, $ar(\Delta PQR) = \frac{1}{2}[1(1-9) + 0(0-2) + 1(2-1)] + \frac{1}{2}(1+1) = 1$, Eq. unix

Now, $ar(\Delta ABC) = \frac{1}{2}[0(1-3) + 2(3+1) + 0(-1-1)]$

$$= \frac{1}{2}[0+8+9] = \frac{8}{2} = 4 + q. units$$
Ratio of ar (Δ PQR) to the ar (Δ ABC) = 1 · 4.

Now,
$$ar(\triangle ABC) = \frac{1}{2}[0(1-3)+2(3+1)+0(-1-1)]$$

= $\frac{1}{2}[0+8+0] = \frac{8}{2} = 4$ sq. units

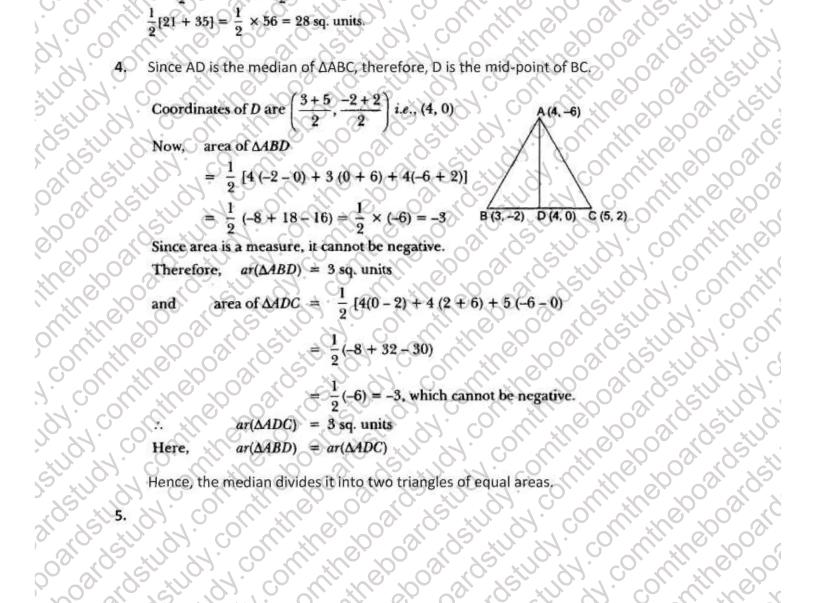
$$= \frac{1}{2}[-4(-5+2)-3(-2+2)+3(-2+5)]+\frac{1}{2}[-4(-2-3)+3(3+2)+2(-2+2)$$

$$= \frac{1}{2}[12-0+9] + \frac{1}{2}[20+15+0]$$

$$\frac{1}{2}[21 + 35] = \frac{1}{2} \times 56 = 28 \text{ sq. units.}$$

Coordinates of
$$D$$
 are $\left(\frac{3+5}{2}, \frac{-2+2}{2}\right)$ i.e., $(4, 0)$
Now, area of $\triangle ABD$

$$= \frac{1}{2} \left[4(-2-0) + 3(0+6) + 4(-6+1)\right]$$


$$= \frac{1}{2} (-8+18-16) = \frac{1}{2} \times (-6) = -3$$
Since area is a measure, it cannot be negative.

That is the median of
$$\triangle ABC$$
, therefore, D is the mid-point of the material of $\triangle ABC$ area of $\triangle ABD$

$$= \frac{1}{2} [4(-2-0) + 3(0+6) + 4(-6+2)]$$

$$= \frac{1}{2} (-8+18-16) = \frac{1}{2} \times (-6) = -3$$
Be is a measure, it cannot be negative.

$$=\frac{1}{2}(-8+18-16)=\frac{1}{2}\times(-6)=-3$$

$$=\frac{1}{2}\left[4\left(-2-0\right)+3\left(0+6\right)+4\left(-6+2\right)\right]$$

$$=\frac{1}{2}\left[-8+18-16\right]=\frac{1}{2}\times\left(-6\right)=-3$$
Since area is a measure, it cannot be negative.

Therefore, $ar(\Delta ABD)=3$ sq. units

and $area of \Delta ADC=\frac{1}{2}\left[4(0-2)+4\left(2+6\right)+5\left(-6-0\right)\right]$

$$=\frac{1}{2}\left(-8+32-30\right)$$

$$=\frac{1}{2}\left(-6\right)=-3$$
, which cannot be negative.

$$\therefore ar(\Delta ADC)=3$$
 sq. units

Here, $ar(\Delta ABD)=ar(\Delta ADC)$

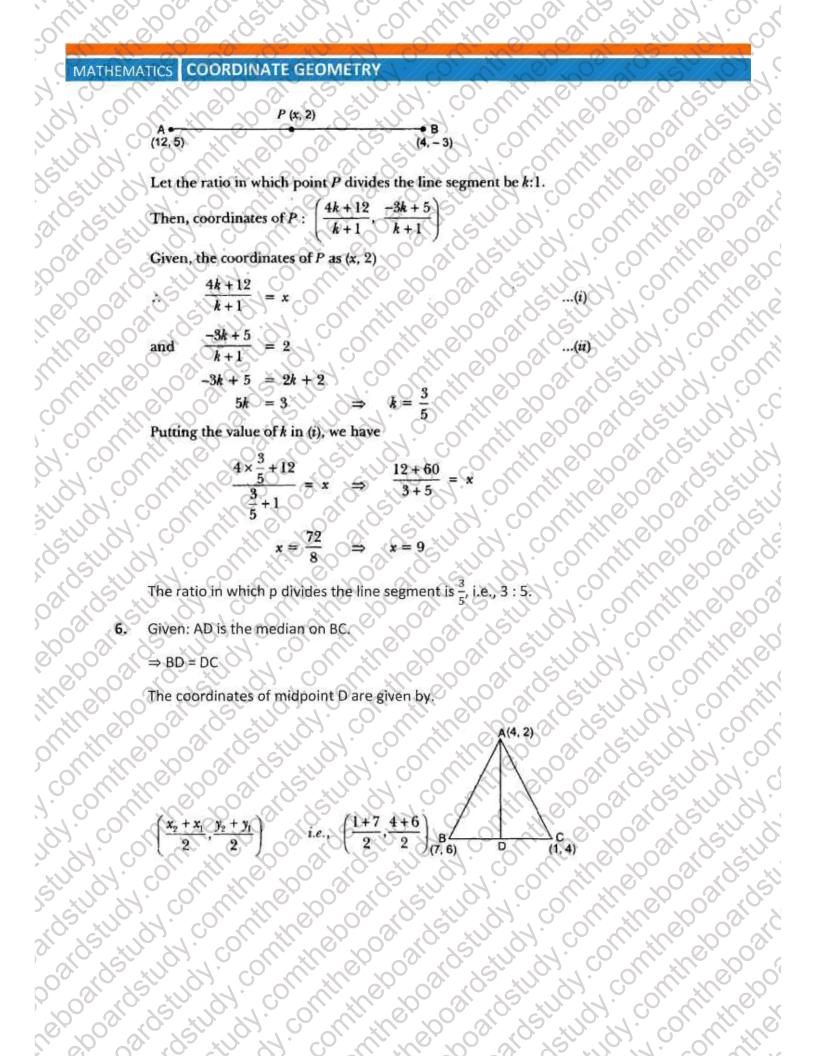
Hence, the median divides it into two triangles of equal areas.

$$=\frac{1}{2}(-8+32-30)$$

$$=\frac{1}{2}(-6) = -3$$
, which cannot be negative.

$$\therefore ar(\Delta ADC) = 3 \text{ sq. units}$$

Here,
$$ar(\Delta ABD) = ar(\Delta ADC)$$


$$\frac{4k+12}{k+1} = x$$

and
$$-3k+5 = 2$$
 ...(ii)
 $-3k+5 = 2k+2$
 $5k = 3$ $\Rightarrow k = \frac{3}{5}$

$$\frac{4 \times \frac{3}{5} + 12}{\frac{3}{5} + 1} = x \qquad \Longrightarrow \qquad \frac{12 + 60}{3 + 5} = x$$

$$x = \frac{72}{8} \qquad \Longrightarrow \qquad x = 9$$

$$\Rightarrow$$
 BD = DC

wangle $ABD = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $= \frac{1}{2} [4(6-5) + 7(5-2) + 4(2-6)] = \frac{1}{2} [4+21-16] = \frac{9}{2} \text{ sq. units}$ Area of $\Delta ACD = \frac{1}{2} [4(4-5) + 1(5-2) + 4(2-4)]$ $= \frac{1}{2} [-4+3-8] = \frac{1}{2} [-9] = \frac{9}{2} \text{ sq. units}$ Hence, AD divides ΔABC into two equal areas. 7. Given points are A(2, 4), P(3, 8) and Q(-10, y)According to the question $PA = O^A$ $2^{14+21-16} = \frac{9}{2} \text{ sq. units}$ $1^{2} - 9 = \frac{9}{2} \text{ sq$ $si^{2} = \sqrt{(2+10)^{2} + (-4-y)^{2}}$ $-1)^{2} + (-12)^{2} = \sqrt{(12)^{3} + (4+y)^{2}}$ $\sqrt{1+144} = \sqrt{144+16+y^{2}+8y}$ $\sqrt{145} = \sqrt{160+y^{2}+8y}$ th sides, we get $145 = 160 + y^{2} + 8y$ 160 - 145 = 0 8y + 15 = 0 y + 15 = 0 y + 5) = 0 y + 5) = 0 y + 5) = 0

$$PA = QA$$

$$\sqrt{(2-3)^2 + (-4-8)^2} = \sqrt{(2+10)^2 + (-4-y)^2}$$

$$\sqrt{(-1)^2 + (-12)^2} = \sqrt{(12)^2 + (4+y)^2}$$

$$\sqrt{1+144} = \sqrt{144 + 16 + y^2 + 8y}$$

$$\sqrt{145} = \sqrt{160 + y^2 + 8y}$$

Area of
$$\Delta ACD = \frac{1}{2}|4(6-5)+7(5-2)+4(2-6)| = \frac{1}{2}|4+21-16| = \frac{9}{2} \text{ sq. units}$$

Area of $\Delta ACD = \frac{1}{2}|4(6-5)+1(5-2)+4(2-4)|$

$$= \frac{1}{2}|-4+3-8| = \frac{1}{2}|-9| = \frac{9}{2} \text{ sq. units}$$

Hence, AD divides ΔABC into two equal areas.

7. Given points are $A(2,4)$, $P(3,8)$ and $O(-10,y)$

According to the question,

$$PA = QA$$

$$\sqrt{(2-3)^2+(-4-8)^2} = \sqrt{(2+10)^2+(-4-y)^2}$$

$$\sqrt{(-1)^2+(-12)^2} = \sqrt{(2)^2+(1+y)^2}$$

$$\sqrt{(-1)^2+(-12)^2} = \sqrt{(2)^2+(1+y)^2}$$

$$\sqrt{1+14} = \sqrt{1+4+16+x^2+8y}$$

On squaring both sides, we get

$$1+144 = \sqrt{1+4+16+x^2+8y}$$

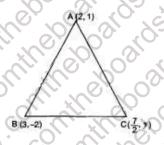
$$\sqrt{1+5} = \sqrt{160+y^2+8y}$$
On $\sqrt{2+8y+180} - 145 = 0$

$$\sqrt{2+8y+180} - 145 = 0$$

WATHEMATICS COORDINATE GEOMETRY

Using distance formula,

$$AB = \sqrt{0^{-5}x^{2} + 0.5^{-5}} = \sqrt{36}.$$


$$AB = RC (: ABC) is a required irrangle)$$

$$x^{2} + 9 = 36$$

$$x^{2} + 27 = 0$$

9. Area of a triangle =
$$\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$= \frac{1}{2} [2t + 2t + 4 - 4t - 12]$$

MATHEMATICS COORDINATE GEOMETRY

$$\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)| = 5$$

$$\Rightarrow \frac{1}{2}|2(-2-y)+3(y-1)+\frac{7}{2}(1+2)| = 5$$

$$\Rightarrow -4-2y+3y-3+\frac{7}{2}+7=10$$

$$\Rightarrow y+\frac{7}{2}=10 \Rightarrow y=10-\frac{7}{2}$$

$$\Rightarrow y=\frac{13}{2}$$
Case Study Answer

1. Answer:

It can be observed that the coordinates of point P, Q and R are (4, 6), (3, 2), an respectively.

only the spood of delivery	ing 47. could it is so so si 19 si ing 4. co. cu
MATHEMATICS COORDINATE GEOMETRY	
MATHEMATICS COORDINAT $ \frac{1}{2} x_{j}(y_{2}-y_{3}) $ $ \Rightarrow \frac{1}{2} 2(-2-y) $ $ \Rightarrow y + \frac{7}{2} = y $ $ \Rightarrow y = \frac{13}{2} $ Case Study Answer- 1. Answer: It can be observed that the respectively.	$ x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) = 5$ $ x_{3}(y_{2}-1)+\frac{7}{2}(1+2) = 5$ $ x_{3}(y_{3}-1)+\frac{7}{2}(1+2) = 5$ $ x_{3}(y_{3}-1)+$
Case Study Answer-	$3y-3+\frac{7}{2}+7=10$ 10 $\Rightarrow y=10-\frac{7}{2}$ coordinates of point P, Q and R are (4, 6), (3, 2), and (6, 5) c. (0, 0) a (4, 6) a (6, 5) a (16, 0)
It can be observed that the respectively.	coordinates of point P, Q and R are (4, 6), (3, 2), and (6, 5)
) COMPINE DOST	(0,0) (10,0) (10,0) (10,0) (10,0)
0,7:00,00	(4,6) (1,1000)
TO A COLUMN SO	(6, 5) (6, 5)
Silving To Olivitle	(16, 0) (16, 0)
2. Answer:	a (6, 5) a (16, 0) b (-12, 6)
i. (b) Distance between ho ii. (c) Now, $HD = (-$	
Thus $HL + LS = \sqrt{29} + \sqrt{26} = 10.48m$	
Thus, $HL+LS=\sqrt{29}+\sqrt{26}=10.48m$ So, extra distance covered by ramesh is $=HL+LS-HS=10.48 \Rightarrow 3=7.48m$ iii. (d) Now, $HP=\sqrt{(3-4)^2+(0-5)^2}=\sqrt{1+25}=\sqrt{26}$	
So, extra distance cover $ \text{iii. (d) Now, } HP = \sqrt{(3)} $ $ PS = \sqrt{[4-3]^2 + 1} $ Thus, $HP + PS \Rightarrow \sqrt{(3)} $ So, extra distance cover	$(-4)^2 + (0-5)^2 = \sqrt{1+25} = \sqrt{26}$
P = V 4 - 9 +	$(2-0)^2 = \sqrt{1+4} = \sqrt{5}$
Thus, $HP+PS \Rightarrow $	$\sqrt{26} + \sqrt{5} = 7.33 \text{m}$
Thus, $HP + PS \Rightarrow \sqrt{Sp}$, extra distance covered by (a) (-1, 3) $\sqrt{(c)}$ (4, 5)	$1-4^{2})+(3-5)^{2}=\sqrt{25+4}=\sqrt{29}$ $1^{2}+(2-3)^{2}=\sqrt{25+1}=\sqrt{26}$ $\sqrt{29}+\sqrt{26}=10.48m$ ed by ramesh is = HL + LS - HS = $10.48-3=7.48m$ $-4)^{2}+(0-5)^{2}=\sqrt{1+25}=\sqrt{26}$ $\sqrt{26}+\sqrt{5}=7.33m$ ed by pulkit is = HP + PS - HS = $7.33-3=4.33m$
isoguide ing a sing a s	coulting to so significant they

i. (b) Distance between home and school,
$${
m HS} = \sqrt{(4-4)^2+(3-5)^2} = 3{
m m}$$

if (c) show,
$$ext{HL} = \sqrt{(-1-4^2) + (3-5)^2} = \sqrt{25+4} = \sqrt{29}$$

$$LS = \sqrt{[4 - (-1)]^2 + (2 - 3)^2} = \sqrt{25 + 1} = \sqrt{26}$$

Thus,
$$HL + LS = \sqrt{29} + \sqrt{26} = 10.48 \text{m}$$

LS =
$$\sqrt{[4-(-1)]^2+(2-3)^2} = \sqrt{25+1} = \sqrt{26}$$

Thus, HL + LS = $\sqrt{29}+\sqrt{26}=10.48 \mathrm{m}$
So, extra distance covered by ramesh is = HL + LS - HS = 10.4
iii. (d) Now, HP = $\sqrt{(3-4)^2+(0-5)^2} = \sqrt{1+25} = \sqrt{26}$
PS = $\sqrt{[4-3]^2+(2-0)^2} = \sqrt{1+4} = \sqrt{5}$

$$PS = \sqrt{[4-3]^2 + (2-0)^2} = \sqrt{1+4} = \sqrt{5}$$

Thus,
$$HP + PS \Rightarrow \sqrt{26} + \sqrt{5} = 7.33 \text{m}$$

.swer.true, R is a correct explanation for A
.s; R is true. Offitte Boards turble continue to an activity continue to a destrict the co Acontral and state the property of the poor of the property of John Contrato and State an Setudy Control of the Boards and the

and the transfer of the total desired by the continue of the transfer of the t Agaldstudy contined a last tidy of the boards tidy

Zaroż

dsill

MON