

1. Trigonometric Ratios

Ratio of the sides of a right triangle with respect to the acute angles is called the trigonometric ratios of the angle.

Trigonometric ratios of acute angle A in right. ine boards tudy contine of

"Vitue post qe find A'ci

i.
$$\sin \angle A = \frac{\text{side opposite to} \angle A}{\text{hypotenuse}} = \frac{BC}{AC} = \frac{p}{h}$$

ii.
$$\cos \angle A = \frac{\text{side adjacent to} \angle A}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{b}{h}$$

iii.
$$\tan \angle A = \frac{\text{side opposite to} \angle A}{\text{side adjacent to} \angle A} = \frac{BC}{AB} = \frac{p}{b}$$

i.
$$\sin \angle A = \frac{\text{side opposite to} \angle A}{\text{hypotenuse}} = \frac{BC}{AC} = \frac{p}{h}$$

ii. $\cos \angle A = \frac{\text{side adjacent to} \angle A}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{b}{h}$

iii. $\tan \angle A = \frac{\text{side opposite to} \angle A}{\text{side opposite to} \angle A} = \frac{BC}{AB} = \frac{p}{b}$

iv. $\csc \angle A = \frac{\text{hypotenuse}}{\text{side opposite to} \angle A} = \frac{AC}{BC} = \frac{h}{p}$

v. $\sec \angle A = \frac{\text{hypotenuse}}{\text{side adjacent to} \angle A} = \frac{AC}{AB} = \frac{h}{b}$

vi. $\cot \angle A = \frac{\text{side adjacent to} \angle A}{\text{side opposite to} \angle A} = \frac{AB}{BC} = \frac{b}{p}$

The values of the trigonometric ratios of an angle do not vary with

v.
$$\sec \angle A = \frac{\text{hypotenuse}}{\text{side adjacent to} \angle A} = \frac{AC}{AB} = \frac{h}{b}$$

vi.
$$\cot \angle A = \frac{\text{side adjacent to} \angle A}{\text{side opposite to} \angle A} = \frac{AB}{BC} = \frac{b}{p}$$

The values of the trigonometric ratios of an angle do not vary with the length of the sides of the triangle, if the angles remain the same.

2. Relation between trigonometric ratios

90° ASTUDY CONTINEDOSTIDS The ratios cosec A, sec A and cot A are the reciprocals of the ratios sin A, cos A 30 ardstudy con respectively as given:

$$i \quad \cos e c\theta = \frac{1}{\sin \theta}$$

ii.
$$\sec \theta = \frac{1}{\cos \theta}$$

iii.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

iv. $\cot \theta = \frac{1}{\tan \theta}$
3. Values of Trigono

iv.
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

i. $\csc\theta = \frac{1}{\sin \theta}$ ii. $\sec\theta = \frac{1}{\cos \theta}$	ill iller	O Sil	2,95	10.3	94. com
iii. $tan\theta = \frac{\sin \theta}{\cos \theta}$	01.41	Spoo	00/0	aidsil	71194, C
tauo	$\frac{\partial}{\partial \theta}$	111/10			idstudy o
Values of Trigonome ∠A	0°	me speci	45°	60°	90°
sin A	511,00	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	POPUL
cos A	Si Gell	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	
tan A	0000010	$\frac{1}{\sqrt{3}}$	31	√3	Not defined
cosec A	Not defined	2	√2	2 √3	COTTON
sec A		$\frac{2}{\sqrt{3}}$	√ <u>2</u> ¢	2	Not defined
Signification of	COLL VILLE	1800	00,31	31/35	Asingy.

	1	101 29			
0.50	cot A	Not defined	$\sqrt{3}$ 1	O \$ 0.0	30
1	()	73. 79.	10 77	√3	VO. 1

4. Trigonometric ratios of complementary angles

Two angles are said to complementary angles if their sum is equal to 90°. Based on this relation, the trigonometric ratios of complementary angles are given as follows:

i.
$$\sin (90^{\circ} - A) = \cos A$$

ii.
$$\cos (90^{\circ} - A) = \sin A$$

iii.
$$tan (90^{\circ} - A) = \cot A$$

iv.
$$\cot (90^{\circ} - A) = \tan A$$

v.
$$\sec (90^{\circ} - A) = \csc A$$

vi.
$$\cos (90^{\circ} - A) = \sec A$$

sec 90° = 1 = cosec 90° , cosec 0°, tan 90° and cot 0° are Note: $\tan 0^\circ = 0 = \cot 90^\circ$, $\sec 0^\circ$ not defined.

5. Basic trigonometric identities:

i.
$$\sin^2\theta + \cos^2\theta = 1$$

ii.
$$1 + \tan^2 \theta = \sec^2 \theta$$
; $0 \le \theta < 90^6$

iii.
$$1 + \cot^2 \theta = \csc^2 \theta$$
; $0 \le \theta < 90^\circ$

6. The height or length of an object or the distance between two distant objects can be determined by the help of trigonometric ratios

7. Line of sight

The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.

Pythagoras theorem

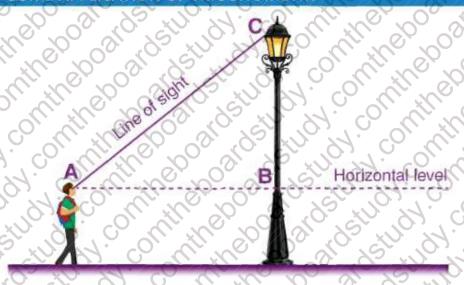
It states that "In a right triangle, square of the hypotenuse is equal to the sum of the square of the other two sides"

When any two sides of a right triangle are given, its third side can be obtained by using Pythagoras theorem

Reflection from the water surface

In case of reflection from the water surface, the two heights above and below the ground level are equal in length. Jehldy. Contine boardst mine, boardstudy. com

hahnardstudy.comil


Mardsilly contin

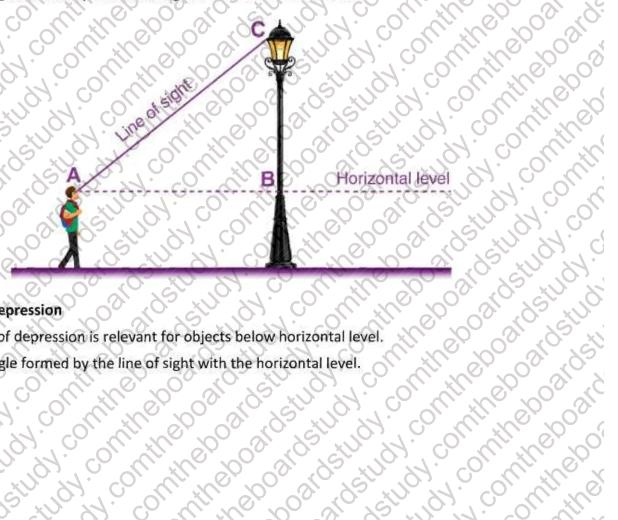
ard study contine of

10. Heights and Distances

contheboardstudi Horizontal Level and Line of Sight

. Hetildy comits

Line of sight and horizontal level


Line of sight is the line drawn from the eye of the observer to the point on the object viewed by the observer.

Horizontal level is the horizontal line through the eye of the observer.

Angle of elevation

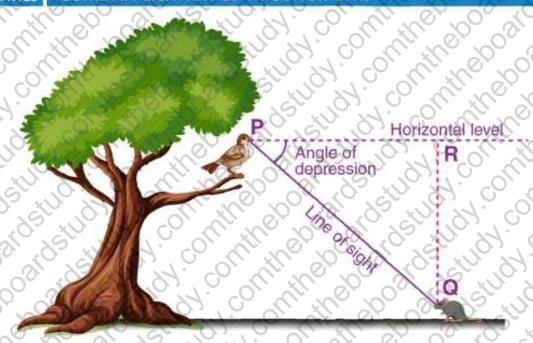
The angle of elevation is relevant for objects above horizontal level.

It is the angle formed by the line of sight with the horizontal level

mineboardst

nahoardstud

Angle of depression

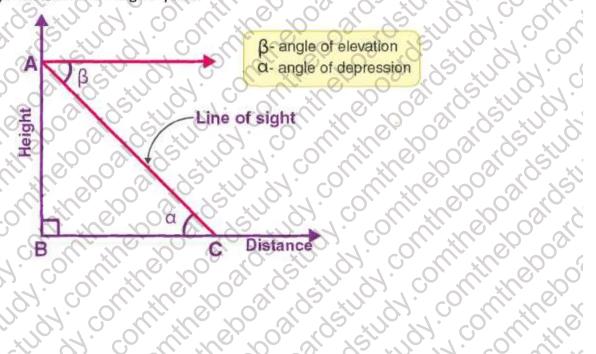

ardstudy.cc

. Heillow. Com

HINN CORNEY

The angle of depression is relevant for objects below horizontal level.

www.defudy.com It is the angle formed by the line of sight with the horizontal level.


11. Calculating Heights and Distances

- Step 2: Mark all known heights, distances and angles and denote unknown lengths by variables.

 Step 3: Use the values of various trigonometric rational contents of the problem.

Height and Distance in Trigonometry

The measurement of an object facing vertically is the height. Distance is defined as the measurement of an object from a point in a horizontal direction. If an imaginary line is drawn from the observation point to the top edge of the object, a triangle is formed by the vertical, horizontal and imaginary line.

SOME APPLICATION OF TRIGONOMETRY

From the figure, the point of observation is C. AB denotes the object's height. BC gives the distance between the object and the observer. The line of sight is given by AC. Angles alpha and beta represent the angle of elevation and depression respectively. If any of the two quantities are provided [a side or an angle], the remaining can be found using them. The law of alternate angles states that the magnitude of the angle of elevation and angle of depression are equal in magnitude, $\tan \alpha = \text{height} / \text{distance}$

12. Measuring the distances of Celestial bodies with the help of trigonometry

Large distances can be measured by the parallax method. The parallax angle is half the angle between two line of sights when an object is viewed from two different positions. Knowing the parallax angle and the distance between the two positions, large distances can be measured.

Solved Examples

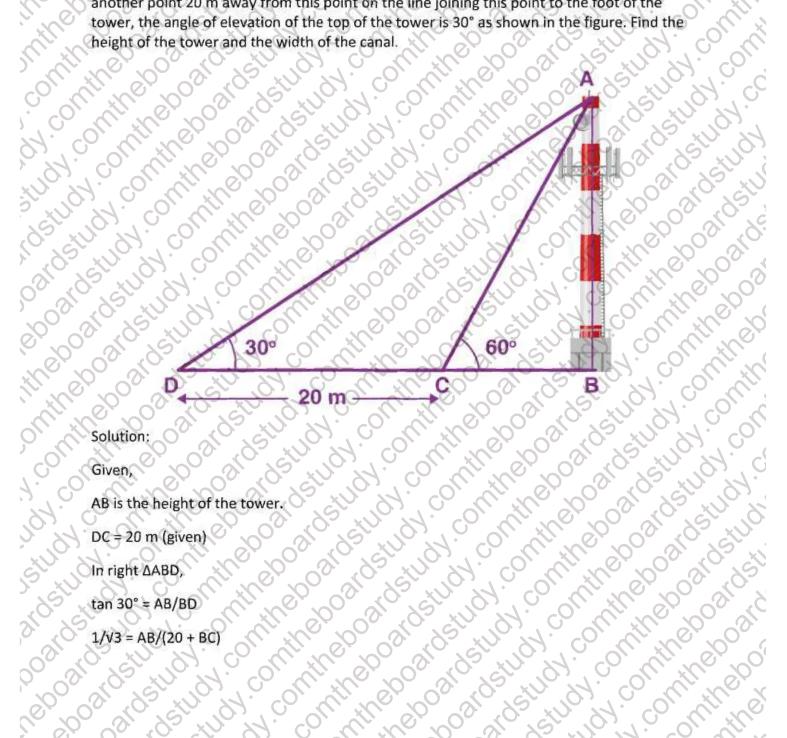
Example 1: A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.


Solution:

Let A be the position of a kite at a height of 60 m above the ground

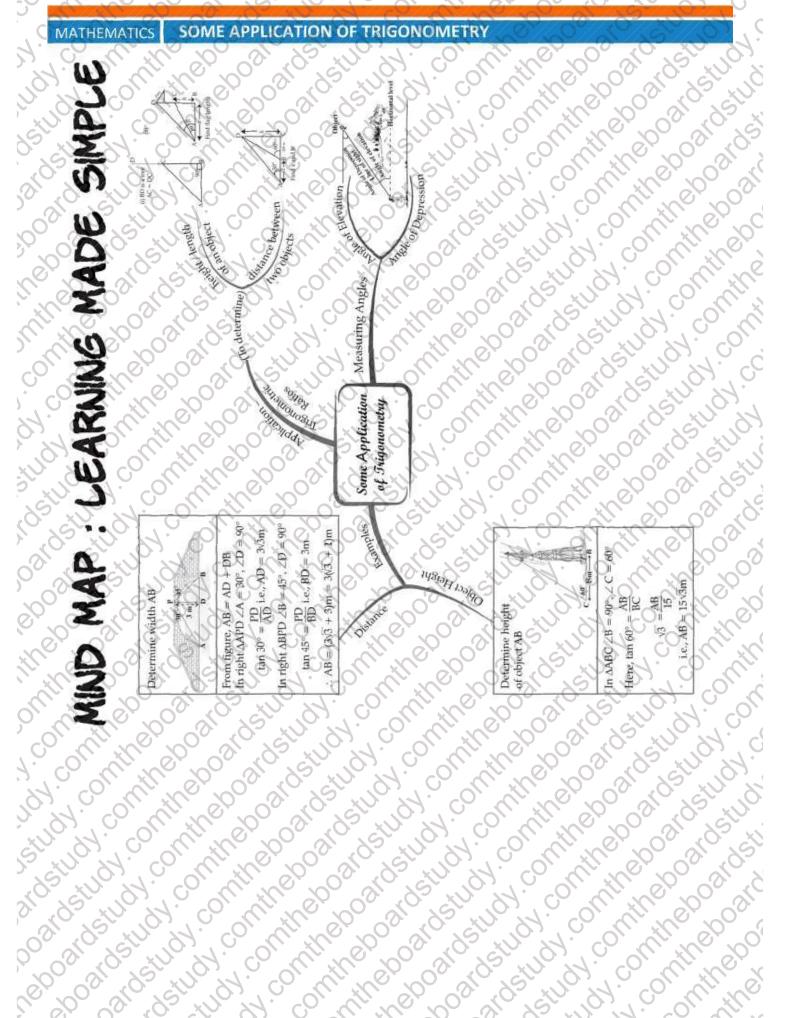
Thus, AB = 60 m

Also, AC is the length of the string.


Angle of inclination = ∠ACB = 60

In right triangle ABC,

indefind A countries to the poor study comine board Therefore, the length of the string is 40v3 m.


Example 2: A TV tower stands vertically on a bank directly opposite the tower, the mother point 20 m away frower, the angle of hight of the Example 2: A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° as shown in the figure. Find the

Given

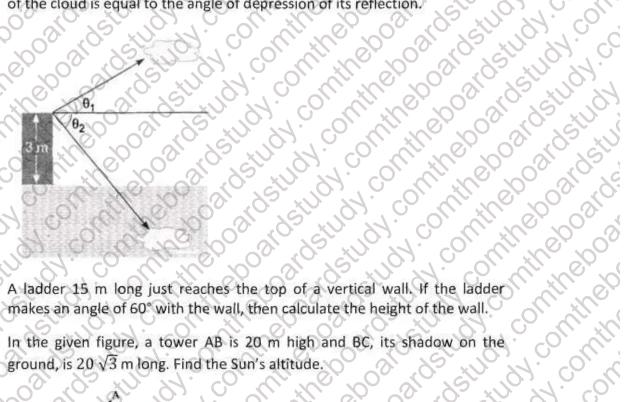
In right ΔABD,

, alice of BC in equation (iii) ... o) f(x) = 30/3 = 30/3 = 10/3 ... ore, the height of the tower is 10/3 in and the width of the canal f(x) = 10 or

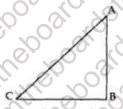
Multiple Choice questions 1. The tops of two poles of height 16m and 10m are connected by a wire, if the wire makes an angle of 60° with the horizontal, then the length of the wire is (a) 10m (b) 12m (c) 16m (d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is v3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3v2 m (b) 6v3 m (c) 2v3 m (d) v3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	HEMATICS 5	Important Questions
1. The tops of two poles of height 16m and 10m are connected by a wire. If the wire makes an angle of 60° with the horizontal, then the length of the wire is (a) 10m (b) 12m (c) 16m (d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3∨2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	Multiple Ch	
(b) 12m (c) 16m (d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is v3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3v2 m (b) 6v3 m (c) 2v3 m (d) V3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	1. The tops of t	two poles of height 16m and 10m are connected by a wire. If the wire
(c) 16m (d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(a) 10m	30, Williams to Sic 42, 4710, A. Coll Villand
(d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3∨2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(b) 12m	7: COUNTILE 600 0 SI 192 SIN 194. 1 CO. WILLIAM
(d) 18m 2. A 20 m long ladder touches the wall at a height of 10 m. The angle which the ladder makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(c) 16m	94. Co. Will " 60,000 Stor 921,1927 COUL
makes with the horizontal is (a) 450 (b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is $\sqrt{3}$ times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3V2 m (b) 6V3 m (c) 2V3 m (d) $\sqrt{3}$ m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(d) 18m	2,194, cooper, 16,000 of 92, 42, 41, 60
(b) 300 (c) 900 (d) 600 3. If the length of the shadow of a tower is $\sqrt{3}$ times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) $3\sqrt{2}$ m (b) $6\sqrt{3}$ m (c) $2\sqrt{3}$ m (d) $\sqrt{3}$ m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	2. A 20 m long l makes with the	ladder touches the wall at a height of 10 m. The angle which the ladder phorizontal is
(c) 900 (d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(a) 450	13, 19, 21, 19, 10, WI, 14, 10, 31, 92, 11,
(d) 600 3. If the length of the shadow of a tower is $\sqrt{3}$ times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) $3\sqrt{2}$ m (b) $6\sqrt{3}$ m (c) $2\sqrt{3}$ m (d) $\sqrt{3}$ m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(P) 300	60,0 31,0 92,179,4 COU, 411, 186,00 31, 4939
(d) 600 3. If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(c) 900	
of elevation of the sun is (a) 30° (b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(d) 600	illepoor signify to out the spool
(b) 45° (c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3V2 m (b) 6V3 m (c) 2V3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	3. If the length of elevation of	of the shadow of a tower is v3 times that of its height, then the angle the sun is
(c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3∨2 m (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	250.00	COUNTING GOOD SI 192 STIP 197. 1 CO. WITH
(c) 60° (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is		97 0 41, 46, 60, 31, 42, 47, 47, 60, 4
 (d) 75° 4. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length (a) 3√2 m (b) 6√3 m (c) 2√3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is 		1947 : 00 Wills 800 0 198 8111 94 : CO.
(a) 3V2 m (b) 6V3 m (c) 2V3 m (d) V3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(d) 75°	2, 110, 47. Col. Will 16, 20, 310, 42; 1, 19, 70;
 (b) 6√3 m (c) 2√3 m (d) √3 m 5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is 	4. If sun's eleva	ation is 60° then a pole of height 6 m will cast a shadow of length
5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(a) 3V2 m	Sir Asi ing A. Coll Vill Rep Cost My Sing
5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is		Logi 492 stri 94. Co, Williams to Sic. 921
5. The angle of elevation of top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. The length of the tower is	(c) 2√3 m	SI POO SIO PETE TO COUNTING SOCIOSING
away from the look of the tower is 50. The length of the tower is		11, 50, 00, 10, 10, 10, 10, 10, 10, 10, 10, 1
(a) v3 m 1	5. The angle of away from the	Tool of the lower is 50. The length of the tower is
18, 10, 10, 41, 60, 00, 10, 41, 41, 00 41, 14	(a) √3 m	1977: COULTINE GOOD ON OF STANDAY COULTINGS
	1,92 M	1975 COLULINES DO SIGNIFICATION COLULIS
91, 92, 410, 94, CO, Will "No, 100, Sto, 12, "19, 17; CO, O,	J. 193	40, 94. Co. W. Wo. Wo. M. Ye. "10,71;

(c) 60.6 m

(d) 20.2 m


(b) 2v3 m (c) 5V3m (d) 10v3 m 6. A contractor planned to install a slide for the children to play in a park. If he prefers to have a slide whose top is at a height of 1.5m and is inclined at an angle of 30° to the ground, then the length of the slide would be (a) 1.5m (b) 2V3m (c) v3m (d) 3m 7. When the length of shadow of a vertical pole is equal to v3 times of its height, the angle of elevation of the Sun's altitude is (a) 30° (b) 45(c) 60° (d) 15 8. From a point P on the level ground, the angle of elevation of the top of a tower is 30°. If the tower is 100m high, the distance between P and the foot of the tower is (a) 100V3m (b) 200v3m (c) 300v3m Journal Still M. Contine to Oak de still M. C. The hoards 9. When the sun's altitude changes from 30° to 60°, the length of the shadow of a tower decreases by 70m. What is the height of the tower? is in the boards to him boards enniheboardstudy.comine Activity Contine boards tild in contine boards tudy col HIN CONTRODOSTOSTUCIO (a) 35 m (b) 140 m

SOME APPLICATION OF TRIGONOMETRY


- irdstudy.comineboardst of an object is the angle formed by the line of sight with the 10. The , oardstudy comine of lepogliquing country country horizontal when the object is below the horizontal level. ithe boards tudy.co
- (a) line of sight
- (b) angle of elevation
- (c) angle of depression
 - (d) none of these

Very Short Questions:

If a man standing observes a of the If a man standing on a platform, 3 meters above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection. in the state of th observes a cloud and its reflection in the lake, then the angle of elevation Oardstudy. Onthe boardstu

- heboards tudy contine of poardstudy.comin HII/AY.COMILY

deiligh

- 4. A ladder, leaning against a wall, makes an angle of 60° with the horizontal.

 If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.

 5. If a tower 30 m high, caste I A CONTINE DO BIOST 'i contineboard
- COMINEDI ACHILDY.CO mineboal mardstill wayogide, ardstudy ardstud

MATHEMATICS SOME APPLICATION OF TRIGONOMETRY

what is the angle of elevation of the sun?

- The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find x: y
- The height of a tower is 12 m. What is the length of its shadow when 10 Sun's altitude is 45°?
- 8. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°

Short Questions:

- The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.
- A tree breaks due to storm and the broken part bends, so that the top of the The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it complementary. Prove that the height of the tower.
- Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 30° and at a distance 10 km further off from the mountain, along the same line, the angle of elevation is 15°. (Use tan 15° = 0.27)
- The shadow of a tower standing on a level ground is found to be 40 m longer when the Sun's altitude is 30° than when it is 60°. Find the height of the tower.
- From a point P on the ground, the angle of elevation of the top of a 10m tall building is 30°. A flag is hosted at the top of the building and the angle of elevation of the top of the flagstaff from P is 450. Find the length of the flagstaff and the distance of the building from the point P. (You may take $\sqrt{3} = 1.732$).

1. COMITY

- A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30° to the ground, whereas for A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string

hahod

SOME APPLICATION OF TRIGONOMETRY

with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

- A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as $^{\circ}$ he walks towards the building. Find the distance he walked towards the building.
- From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.

Long Questions:

- From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60°, respectively. Find the height of the tower.
- A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the bottom of the pedestal is 45°. Find the height of the pedestal.
- From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

From the top of a 7 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is 45°. Find the height of the tower. (Use $\sqrt{3} = 1.732$)

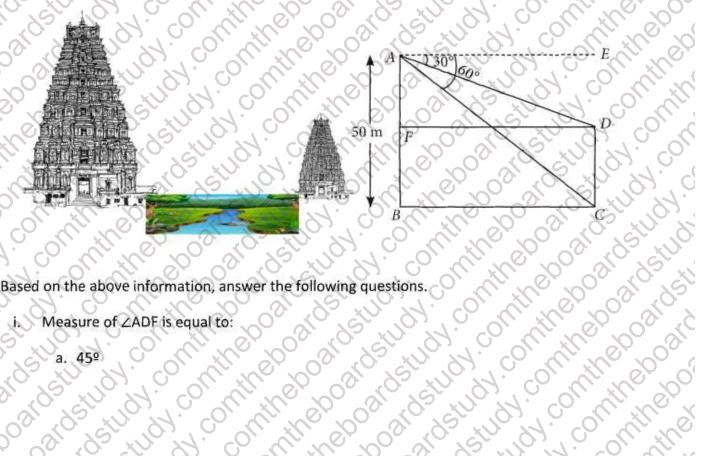
- At a point, the angle of elevation of a tower is such that its tangent is $\frac{5}{12}$ On walking 240 m to the tower, the tangent of the angle of elevation becomes Find the height of the tower.
- A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.
- A straight highway leads to the foot of a tower. A man standing at the top of contineboard the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the

rahoa

ardsill

ACTUDY

Malgi

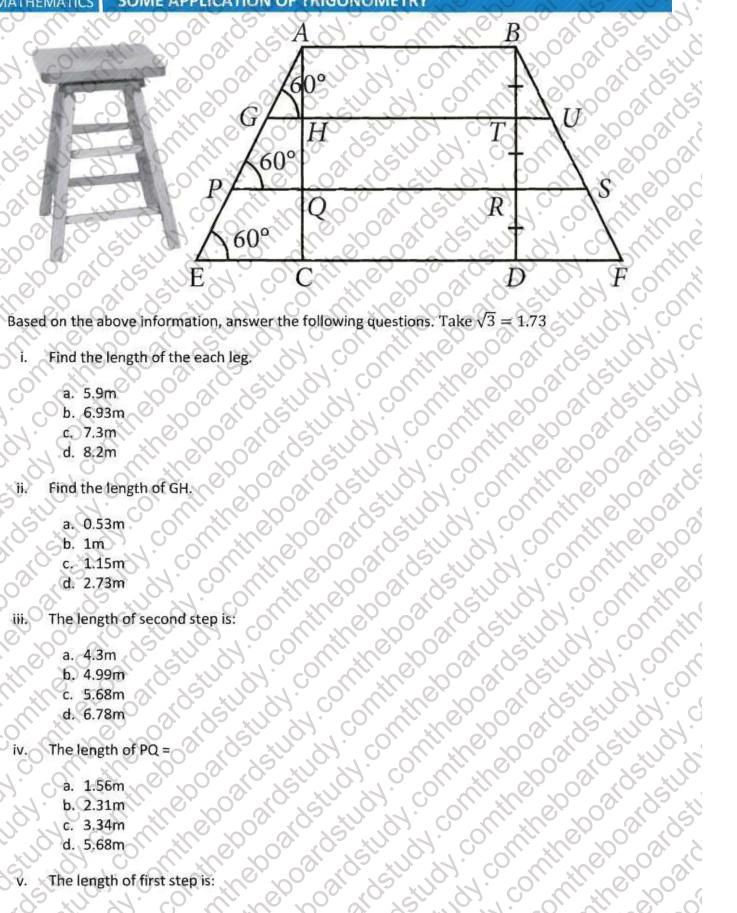

SOME APPLICATION OF TRIGONOMETRY

car to reach the foot of the tower from this point.

- In Fig. ABDC is a trapezium in which AB | CD. Line segments RN and LM are drawn parallel to AB such that AJ = JK = KP. If AB = 0.5 m and AP = BQ = 1.8 m, find the lengths of AC, BD, RN and LM.
- Two poles of equal heights are standing opposite to each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
- A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.
- A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 metres away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and the width of the river.

Case Study Answers:

standing on the top of 50m high temple, observed from the top that angle of depression of the top and foot of other temple are 30° and 60° respectively. Take $\sqrt{3} \approx 1.7^\circ$ 1. There are two temples on each bank of a river. One temple is 50m high. A man, who is

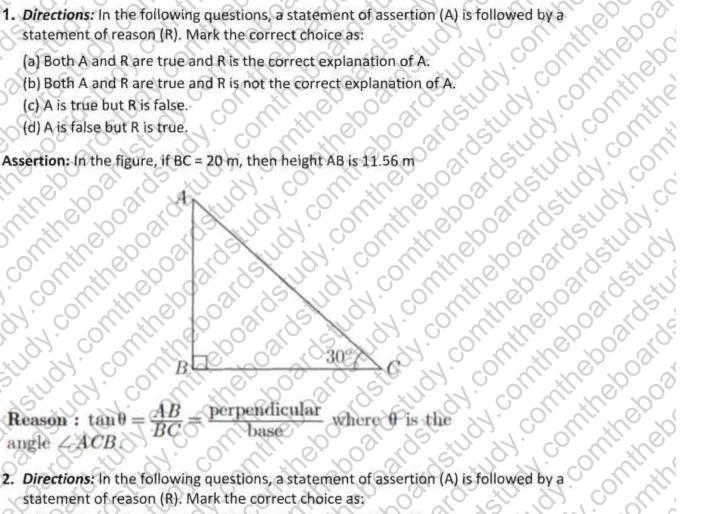

Based on the above information, answer the following questions mineboardstud contheboardst

- in coultheposit Measure of ∠ADF is equal to: HINY COMITY E
 - . Actildy.cox a. 45º

...75m c. 25m d. 27m Height of the other temple is; a. 32.5m b. 35m - 33.33m ...40m 200 ardstudy. Contine to architectudy. C

- continebo 28.9 b. 26.74 c. 25m d. 27m a. 32.5m b. 35m
- 35n c. 33,3 d. 40m
- ...ler temple is;
 ...m
 ...s5m
 ... 33.33m
 d. 40m

 Angle of depression is always;
 a) Reflex angle
 b) Straight
 ... An obtuse angle.
 chase a w
 ight of a. Reflex an
 b. Straight.
 c. An obtain
 d. A IED GIUS LIUY. CONTRE DO AND SULLING CONTRE LULY CONTINUEDO BIOSTUDY. CONTINUEDO BIOSTUDA POR CONTINUEDA POR C THE HARDO AND STUDY. SOME THE PROPERTY OF THE Julius of Stranger Jakilidy. Contine loogide tudy. Contine in the loogide tudy. Contine in the loogide tudy. Contine in the loogide tudy. ou source to the local definition of the local definit Vepo Stagging A. Collins programme of the collins o A STOCK OF THE SOUND OF THE STATE OF THE STA


JIdy Contine

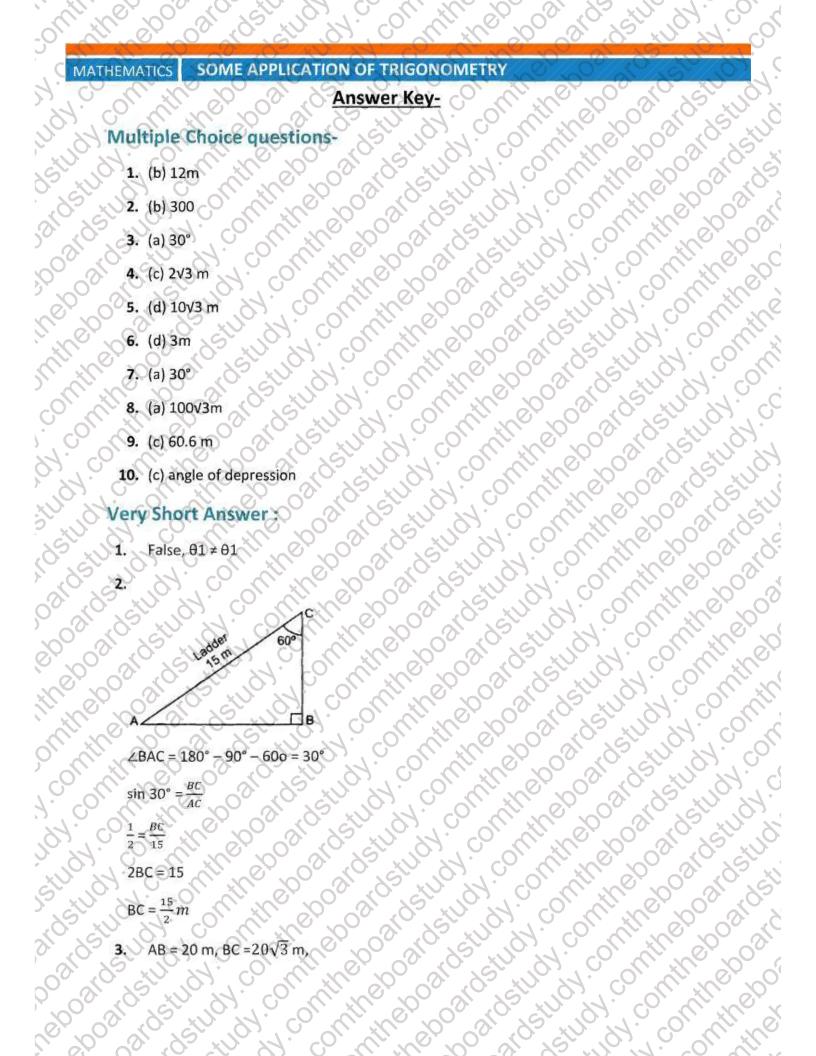
- a. 4.78m
- b. 5.34m

- 1. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

 (a) Both A and R are true and R is the correct explanation (b) Both A and R are true and P:

 (c) A is the

2. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

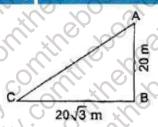

(a) Both A and R are true and R is the correct explanation of A

(b) Both A and R are true and R is not the acceptance. Reason:

- Assertion: If the length of shadow of a vertical pole is equal to its height, then the angle of elevation of the sun is 45° Reason: According to pythagoras theorem, $h^2 = 1^2 + b^2$, where the ength and b = base.

ALY STATE OF THE OF THE

roardstudy.com contheboards mineboardstudi rahnardstudy! , deflidy comits HIN'Y COMINED


$$\angle BAC = 180^{\circ} - 90^{\circ} - 600 = 30^{\circ}$$

$$\sin 30^\circ = \frac{BC}{AC}$$

$$\frac{1}{2} = \frac{BC}{15}$$

$$BC = \frac{15}{2}m$$

3. AB = 20 m, BC =
$$20\sqrt{3}$$
 m

$$\theta = ?$$

$$\frac{AB}{BC} = \tan \theta$$

$$\frac{20}{20\sqrt{3}} = \tan \theta$$

$$\frac{1}{\sqrt{3}} = \tan \theta$$

$$\tan \theta = \tan 30^{\circ} \implies \theta = 30^{\circ}$$

MATHEMATICS SOME APPLICATION OF TRIGONOMETRY

$$\theta = 2$$

$$\ln \Delta \Delta B C,$$

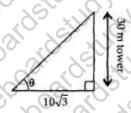
$$\Delta B = \tan \theta$$

$$20\sqrt{3} = \tan \theta$$

$$\frac{1}{\sqrt{3}} = \tan \theta$$

$$\tan \theta = \tan 30^{\circ} \Rightarrow \theta = 30^{\circ}$$
4. Let AC be the ladder

$$\cos 60^{\circ} = \frac{AB}{AC}$$


$$\frac{1}{2} = \frac{2.5}{AC}$$

$$\therefore \text{ Length of ladder, } AC = 5 \text{ m } 2.5 \text{ m}$$
5. Let required angle be θ .

$$\tan \theta = \frac{\pi}{100.3}$$

$$\tan \theta = \sqrt{3}$$

$$\Rightarrow \tan \theta = \tan 60^{\circ} \Rightarrow \theta = 60^{\circ}$$
6. When base is same for both towers and their heights are given, i.e., x and y respectively Let the base of towers be k.

$$\tan \theta = \frac{30}{10\sqrt{3}}$$

$$\tan \theta = \sqrt{3}$$

$$\Rightarrow$$
 tan θ = tan 60° $\therefore \theta = 60^{\circ}$

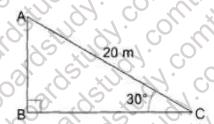
tan
$$30^{\circ} = \frac{k}{k}$$
, $\tan 60^{\circ} = \frac{y}{k}$
 $x = k \tan 30^{\circ} = \frac{k}{\sqrt{3}}$...(i) $y = k \tan 60^{\circ} = k\sqrt{3}$...(ii)

From equations (i) and (ii),

$$\frac{x}{y} = \frac{\sqrt{3}}{k\sqrt{3}} = \frac{k}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{3} = 1; 3$$
7.

Let AB be the tower

Then, $\angle C = 45^{\circ}$, AB = 12 m


$$\tan 45^{\circ} = \frac{AB}{BC} = \frac{12}{BC} \implies BC = 12 \text{ m}$$
 \therefore The length of the shadow is 12 m.

8. Let AB be the vertical pole and AC be the long rope tied to point C. In right \triangle ABC, we have

$$\sin 30^{\circ} = \frac{AB}{BC} = \frac{1}{2} = \frac{AB}{20} \implies \frac{30}{2} = AB \implies AB = 10 \text{ m}$$

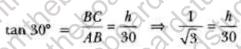
Therefore, height of the pole is 10 m.

$$\frac{x}{y} = \frac{\frac{k}{\sqrt{3}}}{k\sqrt{3}} = \frac{k}{\sqrt{3}} \times \frac{1}{k\sqrt{3}} = \frac{1}{3} = 1 : 3$$

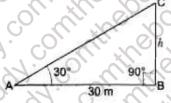
$$\tan 45^{\circ} = \frac{AB}{BC} = \frac{12}{BC} \implies 1 = \frac{12}{BC} \implies BC = 12 \text{ m}$$

$$\sin 30^\circ = \frac{AB}{BC} \Rightarrow \frac{1}{2} = \frac{AB}{20} \Rightarrow \frac{20}{2} = AB \Rightarrow AB = 10 \text{ m}$$

45°, AB = 12 mam $45^{\circ} = \frac{dB}{BC} = \frac{12}{BC} \implies 1 = \frac{12}{BC} \implies BC = 12 \text{ m}$ The length of the shadow is 12 m.


8. Let AB be the vertical pole and AC be the long rope tied to point C. In right AABC, we have $\sin 30^{\circ} = \frac{AB}{BC} \implies \frac{1}{2} = \frac{AB}{20} \implies \frac{20}{2} = AB \implies AB = 1$ Therefore, height of the pole is 10 m:

Short Answer:


1. Let BC be the tower whose height is P of 30 m from the foot of the tower tower from point A is given P.

Now, in right angle D° . Telugards indy. Contine to Stranger of the contine to the contine Now, in right angle ΔCBA we have, of the continuous definition of the continuous and study. in the hoardstill y contine of evation in the boards tildy confi Example Columbia Strategilly Columbia

SA W. COMINGOOD "Methidy comtheboard neboardstudy.comil annardstudy comine poardstudy.com

$$\Rightarrow h = \frac{30}{\sqrt{3}} = \frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = 10\sqrt{3} \text{ m} \text{ A}$$

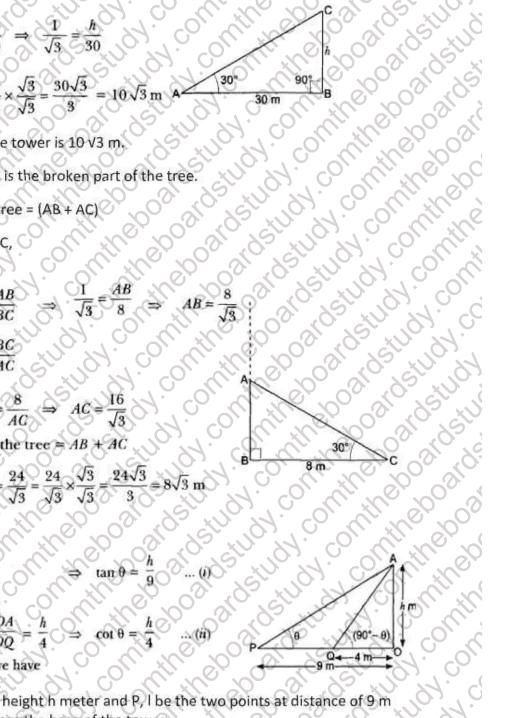
Hence, the height of the tower is 10 V3 m.

In right angle \triangle ABC, AC is the broken part of the tree.

So, the total height of tree = (AB + AC)

Now in right angle ΔABC,

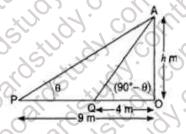
$$\tan 30^\circ = \frac{AB}{BC} \implies \frac{1}{\sqrt{3}} = \frac{AB}{8} \implies AB = \frac{8}{\sqrt{3}}$$


Again,
$$\cos 30^\circ = \frac{BC}{AC}$$

Now in right angle
$$\triangle ABC$$
,
$$\tan 30^{\circ} = \frac{AB}{BC} \implies \frac{1}{\sqrt{3}} = \frac{AB}{8}$$
Again, $\cos 30^{\circ} = \frac{BC}{AC}$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{8}{AC} \implies AC = \frac{16}{\sqrt{3}}$$
Hence, the height of the tree $\Rightarrow AB + AC$

$$= \frac{8}{\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{24}{\sqrt{3}} = \frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{24}{3}$$
3.
$$\tan \theta = \frac{OA}{OP} = \frac{h}{9} \implies \tan \theta = \frac{AB}{AC}$$


$$=\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}}=\frac{24}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}=\frac{24\sqrt{3}}{3}=8\sqrt{3}$$
 m

$$\tan \theta = \frac{\partial A}{\partial P} = \frac{h}{g} \qquad \Rightarrow \tan \theta = \frac{h}{g} \dots (i)$$
Again, in ΔAQO we have
$$\tan (90^{\circ} - \theta) = \frac{OA}{OQ} = \frac{h}{4} \Rightarrow \cot \theta = \frac{h}{4} \dots (ii)$$
Multiplying (i) and (ii), we have

Atheboardstud!

$$\tan (90^{\circ} - \theta) = \frac{OA}{OQ} = \frac{h}{4} \implies \cot \theta = \frac{h}{4} \dots (n)$$

J. J. Contine Do and Study. Now, we have OP = 9 m, OQ = 4 m, $CAPO = \theta$, $\angle AQO = (90^{\circ} - 10^{\circ})$ and OA = hA Survey of the boards in the Chille boards findy contine in a horal definity. Contine to the · Hithey Oak de till dy contine of in contine boards hidy. col

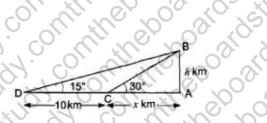
Let
$$\angle APO = \theta$$
, $\angle AQO = (90^{\circ} - \theta)$

HIVA COLUMN

$$\tan \theta \times \cot \theta = \frac{h}{9} \times \frac{h}{4} \implies 1 = \frac{h^2}{36} \implies h^2 = 36$$

In $\triangle ADB$, we have

tan 30° =

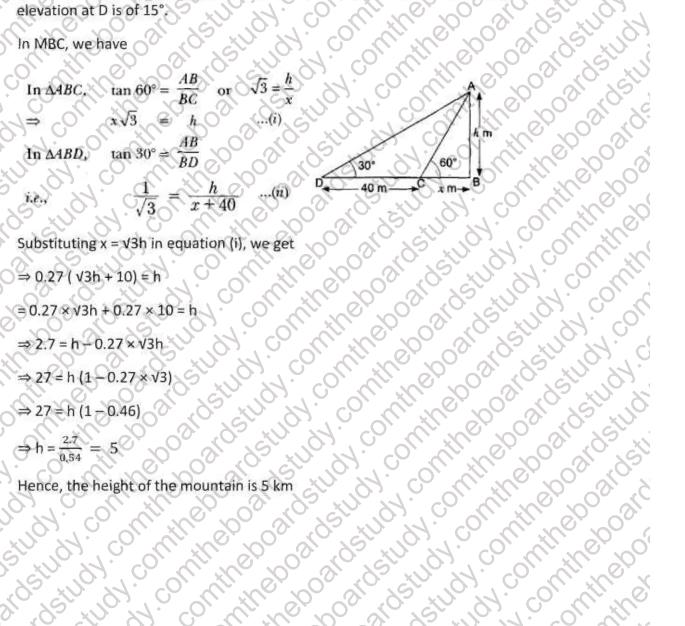

$$30^{\circ} = \frac{AB}{AC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x}$$

$$x = \sqrt{3}h$$

$$\triangle ADB, \text{ we have}$$

$$\tan 15^{\circ} = \frac{AB}{AD} \Rightarrow 0.27 = \frac{h}{x+10}$$

$$0.27 (x + 10) = h \qquad ...(i)$$



Height cannot be negative

Let AB be the mountain of height h kilometers. Let C be a point at a distance of x km, from the base of the mountain such that the angle of elevation of the top at C is 30°. Let D be a point at a distance of 10 km from C such that angle of elevation at D is of 15

In
$$\triangle ABC$$
, $\tan 60^\circ = \frac{AB}{BC}$ or $\sqrt{3} = \frac{h}{x}$
 $\Rightarrow \qquad x\sqrt{3} = h$...(i)

$$\frac{1}{\sqrt{3}} = \frac{h}{x+40}$$
 ...(ii)

$$\Rightarrow$$
 0.27 ($\sqrt{3}h + 10$) = h

$$= 0.27 \times \sqrt{3}h + 0.27 \times 10 = h$$

$$\Rightarrow$$
 2.7 = h $-$ 0.27 \times V3h

$$\Rightarrow$$
 27 = h (1 $-$ 0.27 \times $\sqrt{3}$)

$$\Rightarrow$$
 27 = h (1 $-$ 0.46)

$$\Rightarrow 2.7 = h - 0.27 \times V$$

$$\Rightarrow 27 = h (1 - 0.27 \times V)$$

$$\Rightarrow 27 = h (1 - 0.46)$$

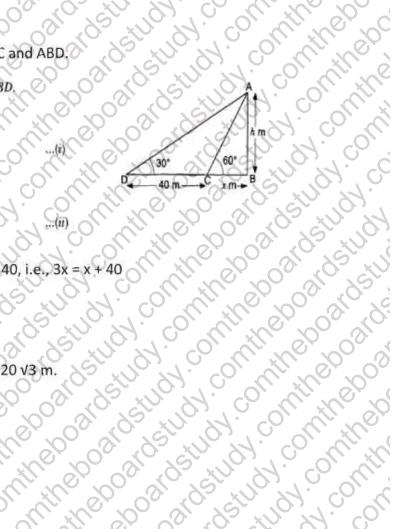
$$\Rightarrow h = \frac{2.7}{0.54} = 5$$
Hence, the height of

In Fig. AB is the tower and BC is the length of the shadow when the Sun's altitude is 60°, i.e., the angle of elevation of the top of the tower from the tip of the shadow is 60° and DB is the length of the shadow, when the angle of elevation is 30°

Now, let AB be h m and BC be x m.

According to the question, DB is 40 m longer than BC

So,
$$BD = (40 + x) m$$


Now, we have two right triangles ABC and ABD.

Now, we have two right triangles ABC and ABD

In
$$\triangle ABC$$
, $\tan 60^\circ = \frac{AB}{BC}$ or $\sqrt{3} = \frac{h}{x}$

In
$$\triangle ABD$$
, $\tan 30^\circ = \frac{AB}{BD}$

$$\frac{1}{\sqrt{3}} = \frac{h}{x+40}$$

onthe boardstudy comity x + 40, i.e., 3x = x + 40 Using (i) in (ii), we get (x v3) v3

i.e.,
$$x = 20$$

Therefore, the height of the tower is 20 v3 m.

In Fig. AB denotes the height of the building, BD the flagstaff and P the given A Style Hilly Continue of the pool of the point. Note that there are two right triangles PAB and PAD. We are required to Letildy contine boards tild find the length of the flagstaff, i.e., BD and the distance of the building from the point P, i.e., PA.

Since, we know the height of the building AB, we will first consider the right mardstudy comi . Hetildy. comthebl HIN'N COMINEDOS hahoaidstudy.co contheboardsti mine board studi

We have,
$$\tan 30^\circ = \frac{AB}{AP} \Rightarrow \frac{1}{\sqrt{3}} = \frac{10}{AP}$$

$$\Rightarrow \qquad AP = 10\sqrt{3}$$

i.e., the distance of the building from P is $10\sqrt{3}$ in = $10 \times 1.732 = 17.32$ m Next, let us suppose DB = x m. Then, AD = (10 + x) m.

Now, in right APAD,

$$\tan 45^{\circ} = \frac{AD}{AP} = \frac{10 + x}{10\sqrt{3}} \implies 1 = \frac{10 + x}{10\sqrt{3}} \implies 10\sqrt{3} = 10 + x$$

i.e.,
$$x = 100(\sqrt{3} - 1) = 7.32$$

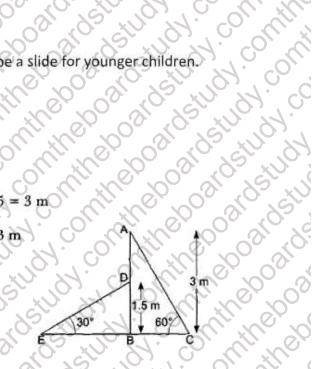
So, the length of the flagstaff is 7.32 m.

Let AC be a steep slide for elder children and DE be a slide for Then AB = 3 m and DB = 1.5 m.

Now, in right angle DDBE, we have

$$\sin 30^{\circ} = \frac{BD}{DE} = \frac{4.5}{DE}$$

$$\Rightarrow \frac{1}{2} = \frac{1.5}{DE}$$

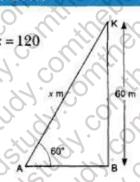

$$\therefore DE = 2 \times 1.5 = 3 \text{ m}$$

Length of slide for younger children = 3 m Again, in right angle $\triangle ABC$, we have

$$\sin 60^{\circ} = \frac{AB}{AC} \implies \frac{\sqrt{3}}{2} = \frac{3}{AC}$$

$$\sin 60^{\circ} = \frac{AB}{AC} \implies \frac{\sqrt{3}}{2} = \frac{3}{AC}$$

$$\Rightarrow AC = \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3} \text{ m}$$
So, the length of slide for elder children is 2 V3



So, the length of slide for elder children is 2 v3 m.

Panardstudy. Contine boardstudy. Contine Let AB be the horizontal ground and K be the position of the kite and its height on the boards fill by contine boards. from the ground is 60 m and let length of string AK be x m

-And contine boards tudy of THE CORTHEROSTION OF THE PROPERTY OF THE PROPE Actual Contine boards. Now, in right angle ΔABK we have - ardefudy comtheboat

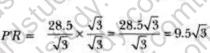
$$\sin 60^{\circ} = \frac{BK}{AK} = \frac{60}{x} \implies \frac{\sqrt{3}}{2} = \frac{60}{x} = \frac{120}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{120\sqrt{3}}{3} = 40\sqrt{3} \text{ m}$$

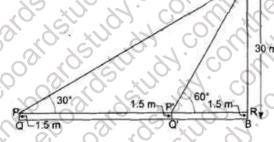
So, the length of string is 40 v3 m.

that

position of the boy be P'Q'

Now, in \triangle ARP, we have


$$\tan 30^{\circ} = \frac{AR}{PR} = \frac{AB - RB}{PR}$$


$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{30-1.5}{PR} = \frac{28.5}{PR}$$

$$PR = 28.5 \times \sqrt{3}$$

Again, in $\Delta ARP'$ we have

$$\tan 60^{\circ} = \frac{AR}{P'R} \implies \sqrt{3} = \frac{28.5}{P'R}$$

$$= 28.5 \text{ V3} - 9.5 \text{ V3} = 19 \text{V3}$$

In Fig. A and B represent points on the bank on opposite sides of the river, so that AB is the width of the river. P is a point on the bridge at a height of 3 m i.e., DP = 3m. We are interested to determine the width of the river. The length of the side AB of the Δ APB. i chidy contine boards tudi 10. husing in the second of the se hahoaidstud mineboards' and study.co

So,
$$\tan 30^{\circ} = \frac{PD}{AD}$$

i.e.
$$\frac{1}{\sqrt{3}} = \frac{3}{AD}$$

or
$$AD =$$

$$130^{\circ} = \frac{PD}{AD}$$

$$\frac{1}{\sqrt{3}} = \frac{3}{AD} \quad \text{or} \quad AD = 3\sqrt{3} \text{ m}$$

$$ght \, \Delta PDB,$$

$$\frac{PD}{DB} = \tan 45^{\circ} \quad \Rightarrow \quad \frac{3}{DB} = 1$$

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

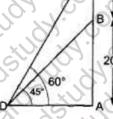
...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.

...width of the river is $3(\sqrt{3} + 1)$ m.


...width of the river is

$$\tan 60^{\circ} \Rightarrow \frac{AC}{AD} \Rightarrow \sqrt{3} = \frac{x + 20}{AD}$$

$$\Rightarrow AD = \frac{x + 20}{\sqrt{3}}$$

$$\Rightarrow 1 = \frac{20}{AD}$$

$$\Rightarrow AD = 20 \text{ m}$$

Again, in
$$\triangle ADB$$
, we have $\tan 45^{\circ} = \frac{AB}{AD}$

$$\Rightarrow 1 = \frac{20}{AD} \qquad \Rightarrow AD = 20 \text{ m} \qquad ...(ii)$$
Putting the value of AD in equation (i), we have
$$\Rightarrow 20 = \frac{x+20}{\sqrt{3}} \Rightarrow 20\sqrt{3} = x+20$$

$$\Rightarrow x = 20\sqrt{3} - 20 = 20 (\sqrt{3} - 1) = 20 (1.732 - 1) = 20$$
Hence, the height of tower is 14.64 m.

$$\Rightarrow$$
 x = 20 $\sqrt{3}$ - 20 = 20 ($\sqrt{3}$ - 1) = 20 (1.732 - 1) = 20 × 0.732 = 14.64 m

 $= 20 \text{ m} \qquad ...(ii)$ $= 20 \text{ m} \qquad ...(ii)$ $= 20 = \frac{x + 20}{\sqrt{3}} \implies 20 \sqrt{3} = x + 20$ $\Rightarrow x = 20\sqrt{3} - 20 = 20 \text{ (V3} - 1) = 20 \text{ (1.732} - 1) = 20 \times 0.732 = 14.64 \text{ m}$ Hence, the height of tower is 14.64 m.

It AB be the pedestal of height h metres and BC be the Day point on the ground such that DA = 45° and \angle CDA = 60°

(In \triangle BDA, *** The rence, the height of tower is $14.64 \, \text{m}$.

Let AB be the pedestal of height h metres and BC be the statue of height $1.6 \, \text{m}$.

Let D be any point on the ground such that, $\angle BDA = 45^\circ \, \text{and} \, \angle CDA = 60^\circ$ Now, in $\triangle BDA_v \, \text{we have}$ $A = 45^{\circ}$ and $\angle CDA$ Now, in $\triangle BDA$, we have

ahnardstudy.co -Ardsilldy comi Repositosing

MATHEMATICS SOME APPLICATION OF TRIGONOMETRY

$$\tan 45^{\circ} = \frac{AB}{DA} \Rightarrow \frac{h}{DA} \Rightarrow 1 = \frac{h}{DA}$$

$$\therefore DA \Rightarrow h \qquad ...(a)$$
Again in $\triangle ADC$, we have
$$\tan 60^{\circ} = \frac{AC}{AD} = \frac{AB + BC}{AD}$$

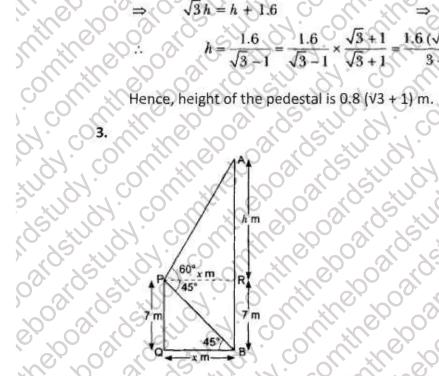
$$\Rightarrow \sqrt{3} = \frac{h + 1.6}{h} \qquad \text{[From equation (i)]}$$

$$\Rightarrow \sqrt{3}h = h + 1.6 \qquad \Rightarrow (\sqrt{3} - 1)h = 1.6$$

$$\therefore h = \frac{1.6}{\sqrt{3} - 1} = \frac{1.6}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{5} + 1} = \frac{1.6(\sqrt{3} + 1)}{3 - 1} = \frac{1.6(\sqrt{3} + 1)}{2} = 0.8 \times (\sqrt{3} + 1) \text{ m}$$

Hence, height of the pedestal is 0.8 (V3 + 1) m.

3.


Let PQ be the building of height 7 metres and AB be the cable tower. Now it is given that the angle of elevation of the top A of the tower observed from the top P of building is 60° and the angle of depression of the base B of the tower observed from 15 and the angle of depression of the base B of the tower observed from 15 and the angle of depression of the base B of the tower observed from 15 and 13 and 13 and 14 angle of depression of the base B of the tower observed from 15 and 13 and 14 angle of depression of the base B of the tower observed from 15 and 13 and 14 angle of depression of the base B of the tower observed from 15 and 13 and 14 angle of depression of the base B of the tower observed from 15 and 15 a

 $\sqrt{3}\,h = h + 1.6$

$$\sqrt{3} = \frac{h+116}{h}$$

$$\Rightarrow$$
 $(\sqrt{3}-1)h = 1.6$

$$h = \frac{1.6}{\sqrt{3}} = \frac{1.6}{\sqrt{3}} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{1.6(\sqrt{3}+1)}{3+1} = \frac{1}{3}$$

Let PQ be the building of height 7 metres and AB be the cable tower. Now it is given that the angle of elevation of the top A of the tower observed from the top P of building is 60° and the angle of depression of the base P observed from P is 45° (Fig. 11.38).

So, $\triangle APR = 60^\circ$ and $\angle CPS$ IED GIUSUUN CORTREDO ARDS LIVER CORTREDO ARDS So, $\angle APR = 60^\circ$ and $\angle QBP = 45^\circ$ Let QB = x m, AR = h m , i.e. contine boardstudy. on the boardstudy. July the boards the bo ENNANCOUNTREDOSIDES UNIVERSITATION CORNILLA IIII SON SINGSTINGY CONTINUEDO AIDE

So,
$$\angle APR = 60^{\circ}$$
 and $\angle QBP = 45^{\circ}$
Let $QB = x$ m, $AR = h$ m then, $PR = x$ m
Now, in $\triangle APR$, we have
 $\tan 60^{\circ} = \frac{AR}{PR}$
 $\Rightarrow \sqrt{3} = \frac{h}{x}$

$$\tan 60^\circ = \frac{AR}{PR}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow \sqrt{3}x = h$$

$$\tan 45^\circ = \frac{PQ}{QB}$$

$$\Rightarrow 1 = \frac{7}{x}$$

$$\Rightarrow x = 7 \dots (ii)$$

$$h = \sqrt{3} \times 7 = 7\sqrt{3}$$

So, the height of tower =
$$AB = AR + RB = 7 \sqrt{3} + 7 = 7(\sqrt{3} + 1) \text{ m}$$

where y is a sum of y is the state of y is a sum of y is a sum of y in the fig. let y is a sum of y in y in y is a sum of y in y in y in y is a sum of y in y in y in y is a sum of y in y in

$$\tan \phi = \frac{5}{12}$$

and
$$\tan \theta = \frac{3}{4}$$

Let
$$BC = x m$$
, $AB = y m$

$$\tan \theta = \frac{9}{x}$$

12y = 5x + 1200 $1200 \Rightarrow \frac{36y - 20y}{3}$ (Using (iv))
=1200 From (ii) and (iii), we get ASO STINE ON THE STATE OF THE S

Also in right-angled triangle ABD,

$$\tan \phi = \frac{v}{x + 240}$$

From (i) and (v), we get

$$\frac{5}{12} = \frac{y}{x + 240} \implies 12y = 5x + 1200$$

$$\Rightarrow 12y = 5 \times \frac{4}{3}y + 1200$$
 (Using (iv))

$$\Rightarrow 12y - \frac{20}{3}y = 1200 \Rightarrow \frac{36y - 20y}{3} = 1200$$

$$\Rightarrow 16y = 3600 \Rightarrow y = \frac{3600}{16} = 225$$

 $y = \frac{3600}{16} = 225$ Hence, the height of the tower is 225 metres.

5. Let A and B be two positions of the balloon and G be the point of observation. (eyes of the girl)

Now, we have AC = BD = BQ - DQ = 88.2 m - 1.2 m = 87 m $\angle AGC = 60^{\circ}, \angle BGD = 30^{\circ}$ Now, in ** Acoulting Odio Sign

$$AC = BD = BQ - DQ = 88.2 m - 1.2 m = 87 m$$

(eyes of the girl)

Now, we have

$$AC = BD = BQ - DQ = 88.2 \text{ m} - 1.2 \text{ m} = 87 \text{ m}.$$

$$\angle AGC = 60^{\circ}, \angle BGD = 30^{\circ}$$

Now, in $\triangle AGC$, we have

$$\tan 60^{\circ} = \frac{4C}{GC} \implies \sqrt{3} = \frac{87}{GC}$$

$$\Rightarrow CG = \frac{87}{GC} = \frac{87}{GC} \times \sqrt{3} = \frac{87 \times \sqrt{3}}{GC}$$

$$\Rightarrow CG = \frac{87}{\sqrt{3}} = \frac{87}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{87 \times \sqrt{3}}{3}$$

Again, in \(\Delta BGD\) we have

an
$$30^\circ = \frac{BD}{GD}$$
 $\Rightarrow \frac{1}{\sqrt{3}}$

$$GD = 87 \times \sqrt{3}$$

From (i) and (ii), we have
$$CD = 87 \times \sqrt{3} - 29 \times \sqrt{3}$$

$$= \sqrt{3} (87 - 29) = 58\sqrt{3}$$
Hence, the balloon travels 58 $\sqrt{3}$ metres.

To state the state of the state A CHILD CONTINE DO BIT OF THE PARTY OF THE P ardetudy.comthe rahnalidstudy.co mardstudy.com mineboardstudy comine boardst

Let OA be the tower of height h, and P be the initial position of the car when the angle of depression is 30°.

and let the car take t seconds to reach the tower OA from Q (Fig. 11.41). Then,

OQ = ut metres.

Now, in ΔAQO, we have

 $\sqrt{3}h = 6v + vt$ om (i) into (i''' Now, in $\triangle APO$, we have $\tan 30^{\circ} = \frac{OA}{PO}$

$$\tan 60^{\circ} = \frac{QA}{QO}$$

$$\Rightarrow \sqrt{3} \Rightarrow \frac{h}{v}$$

ontheboo

$$h = \sqrt{3}vt$$

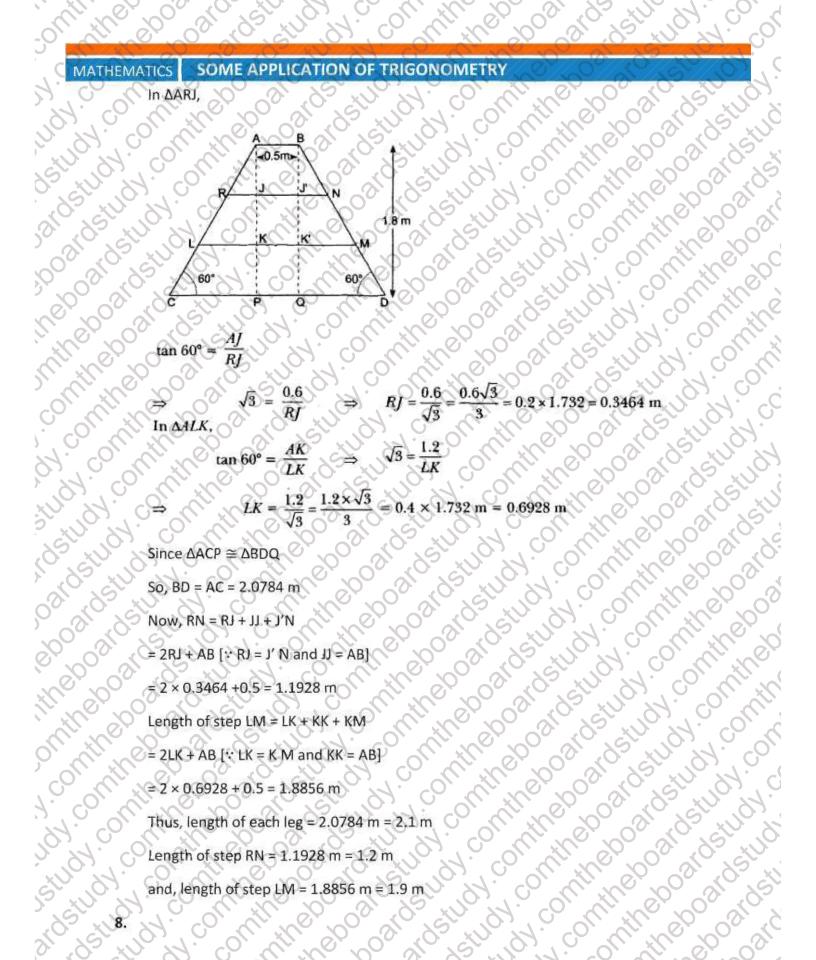
$$\tan 30^\circ = \frac{OA}{PO}$$

$$\tan 60^{\circ} = \frac{QA}{QO}$$

$$\Rightarrow \sqrt{3} = \frac{h}{vt} \Rightarrow h = \frac{A}{A}$$
Now, in ΔAPO , we have
$$\tan 30^{\circ} = \frac{QA}{PO}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{6v + vt} \Rightarrow \sqrt{3}$$

illeposise,


$$AP = 1.8 \, \text{m}$$

$$AJ = JK = KP = 0.6 \text{ m}$$

$$AK = 2AJ = 1.2 \text{ m}$$

AJ = JK = KP = 0.6 m
AK = 2AJ = 1.2 m
In
$$\triangle$$
ARJ and \triangle BNJ' we hav
AJ = BJ, \angle ARJ = \angle BNJ = 60'

and
$$\angle AJR = \angle BJ'N = 90^{\circ}$$

$$\tan 60^\circ = \frac{AJ}{RJ}$$

$$\sqrt{3} = \frac{0.6}{RI}$$

$$\tan 60^{\circ} = \frac{AJ}{RJ}$$

$$\Rightarrow \sqrt{3} = \frac{0.6}{Rf} \Rightarrow RJ = \frac{0.6}{\sqrt{3}} = \frac{0.6\sqrt{3}}{3} = 0.2 \times 1.732 = 0.3464 \text{ m}$$

$$\tan 60^{\circ} = \frac{AK}{LK} \Rightarrow \sqrt{3} = \frac{1.2}{LK}$$

$$\Rightarrow LK = \frac{1.2}{\sqrt{5}} = \frac{1.2 \times \sqrt{3}}{3} = 0.4 \times 1.732 \text{ m} = 0.6928 \text{ m}$$
Since $\triangle ACP \cong \triangle ABDQ$
So, $BD = AC = 2.0784 \text{ m}$
Now, $RN = RJ + JJ + J'N$

$$= 2RJ + AB \left[\frac{1}{2} \cdot RJ = J' \cdot N \right] \cdot N \text{ and } JJ = AB \right]$$

$$= 2 \times 0.3464 + 0.5 = 1.1928 \text{ m}$$
Length of step LM = LK + KK + KM
$$= 2LK + AB \left[\frac{1}{2} \cdot LK = K \cdot M \cdot M \cdot KK = AB \right]$$

$$= 2 \times 0.6928 + 0.5 = 1.8856 \text{ m}$$
Thus, length of each leg = 2.0784 m = 2.1 m
$$= 2LK + AB \cdot \frac{1}{2} \cdot \frac{1}{2$$

$$\tan 60^{\circ} = \frac{AK}{LK} \implies \sqrt{3}$$

$$\Rightarrow LK = \frac{1.2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

In $\triangle ACP$, $\sin 60^{\circ} =$

$$\frac{\sqrt{3}}{2} = \frac{1.8}{AC} \implies AC = \frac{3.6}{\sqrt{3}} = \frac{3.6 \times \sqrt{3}}{3} = 1.2 \times 1.732 = 2.0784 \text{ m}$$

Let AB and CD be two poles of equal height h metre and let P be any point between

The distance between two poles is 80m.(Given)

Let AP = x m, then PC = 100 Let AP = x m, then PC = (80 - x) m.

Let
$$AP = x m$$
, then $PC = (80 - x) m$.

The distance between two poles is 80m. (Given)

Let
$$AP = x$$
 m, then $PC = (80 - x)$ m.

h'm Now, in $\triangle APB$, we have

$$\tan 60^{\circ} = \frac{AB}{AP} = \frac{h}{x}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = \sqrt{3}x \qquad ...(i)$$
Again in $\triangle CPD$, we have
$$\tan 30^{\circ} = \frac{DC}{PC} = \frac{h}{(80 - x)}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{80 - x} \Rightarrow h = \frac{80 - x}{\sqrt{3}} \qquad ...(ii)$$

Again in \(\Delta CPD \), we have

$$\tan 30^{\circ} = \frac{DC}{PC} = \frac{k}{(80 - x)}$$

Again in
$$\triangle CPD$$
, we have
$$\tan 30^{\circ} = \frac{DC}{PC} = \frac{h}{(80 - x)}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{80 - x} \Rightarrow h = \frac{80 - x}{\sqrt{3}} \dots (ii)$$
From (i) and (ii), we have

From (i) and (ii), we have

$$\sqrt{8}x = \frac{80 - x}{\sqrt{3}}$$
 \Rightarrow $3x = 80 - x$ \Rightarrow $4x = 80$ \Rightarrow $x = \frac{80}{4} = 20 \text{ m}$

Now, putting the value of x in equation (i), we have

$$h = \sqrt{3} \times 20 = 20 \sqrt{3}$$

Journal Still M. Contine to But the board Still M. C. Hence, the height of the pole is 20 v3 m and the distance of the point from first pole is 20 m and that of the second pole is 60 m.

Let height of the tower be h metres and width of the canal be x metres, so AB = in a horizontilla in the pool A CHILD CONTINED ORIGINAL · minaboardatudy.cominel in coult be on a sind of the s contine boards tudy conti

- ardstudy contine board Achidy comineboards! And contheboardstud

$$\tan 60^{\circ} = \frac{h}{x}$$

$$\Rightarrow \sqrt{3} = \frac{n}{x}$$

$$\Rightarrow h = \sqrt{3}x$$

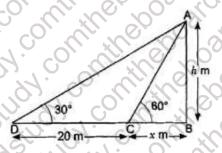
Now, in $\triangle ADB$ we have

$$\tan 30^{\circ} = \frac{AB}{DB}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{20 + x}$$
...(ii)
$$\Rightarrow 20 + x = 3x$$

$$\Rightarrow 20 = 1$$

$$20 + x = \sqrt{3}h$$


From (i) and (ii), we have

$$20 + x = \sqrt{3} \times \sqrt{3}x$$

$$\Rightarrow 20 + x = 3x$$

$$\Rightarrow 20 = 3x - x = 2x$$

$$\Rightarrow x = \frac{20}{2} = 10 \text{ m}$$

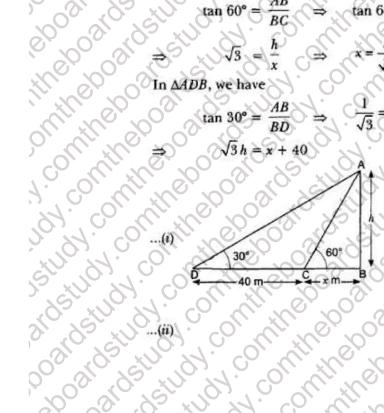
Now, putting the value of x in equation (i), we have $h = \sqrt{3} \times 10 = 10\sqrt{3}$

$$h = \sqrt{3} \times 10 = 10\sqrt{3}$$

Let AB be the tree of height metres standing on the bank of a river. Let C be the position of man standing on the opposite bank of the river such that BC = x m. Let D be the new position of the man. It is given that CD = 40 m of elevation of the top of the tree at C and D are 60° and 2.60° M. J. J. J. Contine to a definition of the contine to the contine 10. China County of the boards of Y. contine to a defludy. contine to a rule to

∠ACB = 60° and ∠ADB = 30°

In ΔACB, we have


$$\tan 60^\circ = \frac{AB}{BC} \implies \tan 60^\circ = \frac{h}{x}$$

$$\sqrt{3} = \frac{h}{x}$$

$$x = \frac{h}{\sqrt{3}}$$

$$\tan 30^\circ = \frac{AB}{BD} \implies \frac{1}{\sqrt{3}} = \frac{h}{x + 40}$$

$$\Rightarrow$$

HINA COMINGY

$$\sqrt{3}h = \frac{h}{\sqrt{3}} + 40 \implies \sqrt{3}h - \frac{h}{\sqrt{3}} = 40$$

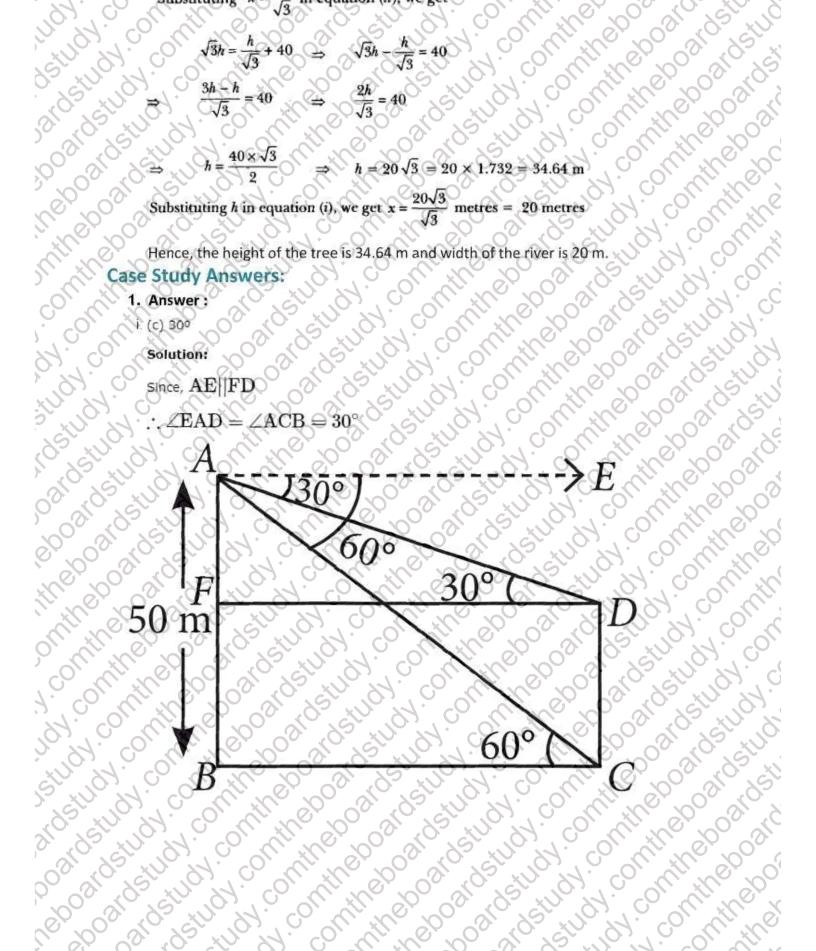
$$\Rightarrow \frac{3h-h}{\sqrt{3}} = 40 \Rightarrow \frac{2h}{\sqrt{3}} = 40$$

MATHEMATICS SOME APPLICATION OF TRIGONOMETRY

Substituting
$$x = \frac{h}{\sqrt{3}}$$
 in equation (ii), we get

$$\sqrt{3}h = \frac{h}{\sqrt{3}} + 40 \implies \sqrt{3}h - \frac{h}{\sqrt{3}} = 40$$

$$\Rightarrow \frac{3h - h}{\sqrt{3}} = 40 \implies \frac{2h}{\sqrt{3}} = 40$$


$$\Rightarrow h = \frac{40 \times \sqrt{3}}{2} \implies h = 20\sqrt{3} = 20 \times 1.732 = 34.64 \text{ m}$$
Substituting h in equation (i), we get $x = \frac{20\sqrt{3}}{\sqrt{3}}$ metres = 20 metres

(Hence, the height of the tree is 34.64 m and width of the river is 20 m.

Case Study Answers:

1. Answer:

$$\angle$$
EAD = \angle ACB = 30°

$$\angle EAC = \angle ACB = 60^{\circ}$$

$$an 60^{\circ} \Rightarrow rac{AB}{BC} \Rightarrow \sqrt{3} = rac{50}{BC}$$

$$\Rightarrow$$
 BC $=\frac{50}{\sqrt{3}}$ $=$ 28.90m

In
$$\triangle ADF$$
, $\tan 30^{\circ} = \frac{AF}{FD}$

i. (b) so
$$^{\circ}$$
 Solution:

(since, $AE | BC$
 $\therefore ZEAC = \angle ACB = 60^{\circ}$

ii) (a) 28 90nt

Solution:

(a) $\triangle ABC$,

 $\tan 60^{\circ} = \frac{AB}{BC} \Rightarrow \sqrt{3} = \frac{50}{BC}$
 $\Rightarrow BC = \frac{50}{\sqrt{3}} = 28.90 \text{m}$

N(c) 33,33m

Solution:

In $\triangle ADF$, $\tan 30^{\circ} = \frac{AF}{FD}$
 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB-BF}{FD} = \frac{1}{\sqrt{3}} = \frac{80-CD}{\frac{30}{3}}$
 $\Rightarrow \frac{1}{3} = 50 - CD$
 $\Rightarrow CD = 50 = \frac{50}{3} = \frac{100}{3} = 33.33 \text{m}$

(v) An acuter angle.

2. Answer:

Given, side of square top = 2m

Also, AC and BO are perpendicular to the ground Also, SC, AH = $HQ = QC$ (By 8.P.1. Theorem)

$$FD = BC = \frac{50}{\sqrt{3}}$$

$$\Rightarrow \frac{50}{3} = 50 - \text{CD}$$

$$\Rightarrow$$
 CD \Rightarrow 50 $-\frac{50}{3} = \frac{100}{3} \Rightarrow$ 33.33m

$$\sin 60^{\circ} = \frac{AC}{AE} \Rightarrow \frac{\sqrt{3}}{2} \Rightarrow \frac{6}{AE}$$

$$\Rightarrow$$
 AE = 6.93m

MATHEMATICS SOME APPLICATION OF TRIGONOMETRY

(b)
$$\&$$
 39 in Solution:

In $\triangle AEC$.

 $\&$ in $60^\circ = \frac{AC}{AE} \Rightarrow \frac{\sqrt{3}}{2} \Rightarrow \frac{e}{AE}$.

 $\Rightarrow AE = 6.93m$
 \Rightarrow Length of each leg i.e., $AE = BF = 6.93m$.

If $(2, 1)$ 15 in Solution:

In $\triangle AGH$, $\tan 60^\circ = \frac{AH}{GH} \Rightarrow \sqrt{3} \Rightarrow \frac{e}{GH}$.

 $\Rightarrow \text{eff} = 1.18m$.

If (9) 3.2m

Solution:

Length of Section step = $9H + HT + TU$.

 $\Rightarrow 1.15 \Rightarrow 2 + 1.15 \Rightarrow 2 + 1.15 \Rightarrow 4.3m$.

If (0) 2. 2.1 m .

Solution:

In $\triangle APQ$.

 $\tan 60^\circ = \frac{AQ}{PQ} \Rightarrow \sqrt{3} \Rightarrow \frac{4}{PQ}$.

 $\Rightarrow PQ = \frac{4}{\sqrt{3}}m = 2.31m$.

If (2) 3.6.2 m

Solution:

Assertion Reason Answer.

(a) Both A and R are true and R is not the correct explanation of A.

(b) 80th A and R are true and R is not the correct explanation of A.

$$= 1.15 + 2 + 1.15 = 4.3$$
m

$$\tan 60^\circ = \frac{AQ}{PQ} \Rightarrow \sqrt{3} = \frac{4}{PQ}$$

$$\Rightarrow PQ = \frac{4}{\sqrt{3}}m = 2.31m$$

$$= 2.31 + 2 + 2.31 = 6.62m$$