Chapter 3

TRIGONOMETRIC FUNCTIONS

EXERCISE 3.1

1 • Find the radian measures corresponding to the following degree measures: (i) 25° (ii) – 47° 30′ (iii) 240° (iv) 520°

Solution:

A radian is another unit for the measurement of angle.

 2π radian is equal to 360°.

By using $1^{\circ} = \pi/180$ radian,

we can convert the degree measures into radian measures.

$$\Rightarrow$$
 1° = π / 180 radian

or 1 radian = $180^{\circ}/\pi$

(i) 25°

As we know that,

 \Rightarrow 1° = π / 180 radian.

We can write

$$\Rightarrow$$
 25° = π / 180 radian \times 25.

By solving this, we get

$$\Rightarrow$$
 25° = 5 π / 36 radian.

(ii)
$$-47^{\circ} 30'$$

We know that $1^{\circ} = 60'$

$$\Rightarrow 1/2^{\circ} = 30'$$

Therefore,

$$\Rightarrow$$
 - 95 / 2°

To convert it into radian measure,

$$\Rightarrow$$
 1° = π / 180 radian.

We can write

$$\Rightarrow$$
 - 47 1/2° = π / 180 radian × (-95/2).

By solving this, we get

$$\Rightarrow$$
 - 47 1/2° = - 19 π / 72 radian

As we know that,

$$\Rightarrow$$
 1° = π / 180 radian.

We can write

$$\Rightarrow$$
 240° = π / 180 radian \times 240.

By solving this, we get

$$\Rightarrow$$
 240° = 4 π / 3 radian.

As we know that,

$$\Rightarrow$$
 1° = π / 180 radian.

We can write

$$\Rightarrow$$
 520° = π / 180 radian \times 520.

By solving this, we get

$$\Rightarrow$$
 520° = 26 π / 9 radian.

2. Find the degree measures corresponding to the following radian measures (Use π = 22/7).

(i) 11/16 (ii) -4 (iii)
$$5\pi/3$$
 (iv) $7\pi/6$

Solution:

Given use $\pi = 22/7$.

As we know that 1 radian = $180^{\circ} / \pi$.

```
(i) 11/16
1 radian = 180^{\circ} / \pi.
\Rightarrow 11 / 16 radian = 180° / \pi × 11 / 16
Use \pi = 22/7,
11/ 16 radian = 39° 22' 30"
(ii) -4
1 radian = 180^{\circ} / \pi.
\Rightarrow - 4 radian = 180° / \pi × (- 4)
Use \pi = 22/7, and solve.
- 4 radian = - 229° 5′ 27"
(iii) 5\pi / 3
1 radian = 180^{\circ} / \pi.
\Rightarrow 5\pi / 3 radian = 180° / \pi × 5\pi / 3
By solving this, we get
\Rightarrow 5\pi / 3 \text{ radian} = 300^{\circ}
(iv) 7\pi / 6
```

By solving this, we get

 \Rightarrow 7 π / 6 radian = 180° / π × 7 π / 6

1 radian = $180^{\circ} / \pi$.

 \Rightarrow 7 π / 6 radian = 210°

A radian measure can be converted using 1 radian = 180° / π

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution:

Given,

Number of revolution made by the wheel in 1 minute

= 360

We know 1 minute = 60 seconds

The number of revolution wheels will make in one second

$$= 360 / 60 = 6.$$

One complete revolution = 2π radian

The number of radians wheel will turn in 1 second

$$= 2 \pi \times 6 = 12 \pi$$
.

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π = 22/7)

Solution:

Let the radius of the circle be r unit and the arc of 1 unit which suspends and angle Θ radian at the center.

 $\Theta = I / r$ radian

Given that

r = 100 cm

and I = 22 cm

By substituting the value, we get

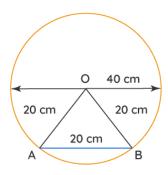
 $\Theta = 22 / 100 \text{ radian}$

To find the degree measure, we will use 1 radian = $180^{\circ} / \pi$

$$\Rightarrow$$
 (180° / π) x (22 / 100)

 $= 126/10 \text{ degree} = 12^{\circ} 36'.$

5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


Solution:

Given that the diameter of the circle = 40 cm and the length of the chord is 20 cm.

⇒ Radius of the circle = half of diameter = 20 cm.

Let AB be the chord whose length is 20 cm (given)

By joining the radii to the ends of the chord, we get a triangle AOB.

In triangle AOB, OA = OB = 20 cm (radii of the circle)

AB = 20 cm (given the length of the chord)

: Triangle AOB is an equilateral triangle with all sides equal.

$$\Rightarrow \Theta = 60^{\circ} = \pi / 3 \text{ radian.}$$

As we know that, in a circle of radius r unit, if the length of the arc is I unit subtends at an angle Θ radian at the center, then I = r × Θ

$$\Rightarrow I = 20 \times \pi / 3$$

$$\Rightarrow$$
 I = 20 π /3 cm.

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution: Let the radii of the circles be r_1 and r_2 be the radii of the two circles.

Let the arc of length I_1 subtend angles 60° at the centre and the arc of the length I_2 be 75° at the centre.

$$\Rightarrow$$
 60° = π /3 radian and 75° = 5π /12 radian using θ = I / r.

As we know that in a circle or radius r, the arc length I subtend at an angle θ radian at the centre, then $\theta = I/r$ or $I = r \theta$

Therefore,

$$I = r_1 \times \pi/3$$
 and $I = r_2 \times 5\pi/12$

$$\Rightarrow$$
 r₁ × π /3 = r₂ × 5π /12

On solving them taking r on one side, we get

$$\Rightarrow$$
 r₁ / r₂ = 5 π /12 × 3/ π

$$\Rightarrow$$
 r₁ / r₂ = 5/4

7. Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length (i) 10 cm (ii) 15 cm (iii) 21 cm

Solution:

Given that the length of the pendulum swings is 75 cm. ⇒ radius is 75 cm.

We know that, in a circle of radius r, the length of the arc is I that subtend at an angle θ radian at the centre, then θ = I / r radian

(i)
$$I = 10 \text{ cm}$$

$$\Rightarrow \theta = I / r \text{ radian}$$

$$\Rightarrow \theta = 10 / 75 \text{ radian} = 2/15 \text{ radian}.$$

(ii)
$$I = 15 \text{ cm}$$

$$\Rightarrow \theta = I / r \text{ radian}$$

$$\Rightarrow$$
 θ = 15 / 75 radian = 1/5 radian.

$$\Rightarrow \theta = I / r \text{ radian}$$

$$\Rightarrow \theta = 21 / 75 \text{ radian} = 7/25 \text{ radian}$$