EXERCISE 3.2

1. Find the values of other five trigonometric functions in Exercises 1 to 5: 1. $\cos x = -1/2$, x lies in third quadrant.

Solution:

Given, $\cos x = -1/2$

It can be written as:

$$\sec x = 1 / \cos x = 1 / (-1/2) = -2.$$

Using the trigonometry identity

$$\sin^2 x + \cos^2 x = 1$$

1 -
$$(-1/2)^2 = \sin^2 x$$

$$1 - (1/4) = \sin^2 x$$

$$\sin^2 x = 3/4$$

$$\sin x = \pm \sqrt{3/2}$$

Since the value of cos x in the third quadrant is negative and x lies in the third quadrant.

$$\sin x = -\sqrt{3/2}$$

$$cosec x = 1/sin x$$

$$cosec x = 1 / -\sqrt{3}/2$$

$$\csc x = -2/\sqrt{3}$$

$$tan x = sin x/cos x$$

$$tan x = (-\sqrt{3}/2)/(-1/2)$$

$$tan x = \sqrt{3}$$

$$\cot x = 1/\tan x$$

$$\cot x = 1/\sqrt{3}$$

2. 2. $\sin x = 3/5$, x lies in second quadrant

Solution:

Given, $\sin x = 3/5$

It can be written as

cosec $x = 1 / \sin x = 1 / (3/5) = 5/3$.

Using the trigonometry identity $\sin^2 x + \cos^2 x = 1$

1 -
$$(3/5)^2 = \cos^2 x$$

$$1 - (9/25) = \cos^2 x$$

$$\cos^2 x = 16/25$$

$$\cos x = \pm 4/5$$

Since x lies in the second quadrant, the value of cos x is negative.

So

$$\cos x = -4/5$$

$$\sec x = 1/\cos x$$

$$\sec x = 1 / -4/5$$

$$\sec x = -5/4$$

$$tan x = sin x/cos x$$

$$= (3/5)/(-4/5)$$

$$= -3/4$$

$$\cot x = 1/\tan x$$

$$= 1/(-3/4)$$

$$= -4/3$$

3. 3. $\cot x = 3/4$, x lies in third quadrant.

Solution:

Given,
$$\cot x = 3/4$$

It can be written as

 $\tan x = 1/\cot x = 1/(3/4) = 4/3.$

Using the trigonometry identity

$$1 + \tan^2 x = \sec^2 x$$

It can be written using the values

$$1 + (4/3)2 = \sec^2 x$$

$$1 + (16/9) = sec^2 x$$

$$(9 + 16) / 9 = sec^2 x$$

$$sec^2 x = 25 / 9$$

$$\sec x = \pm 5/3$$

Since the value of sec x in the third quadrant is negative and x lies in the third quadrant.

$$\sec x = -5/3$$

$$\cos x = 1/\sec x$$

$$\cos x = 1 / (-5/3)$$

$$\cos x = -3/5$$

$$tan x = sin x/cos x$$

$$\sin x = \tan x \cos x$$

$$= 4/3 \times (-3/5)$$

$$= -4/5$$

$$cosec x = 1/sin x$$

$$= 1/(-4/5)$$

$$= -5/4$$

4. 4. $\sec x = 13/5$, x lies in fourth quadrant

Solution:

Given
$$\sec x = 13/5$$

It can be written as $\cos x = 1 / \sec x = 1 / (13 / 5) = 5 / 13$.

Using the trigonometry identity

$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x = 1 - \cos^2 x$$

$$\sin^2 x = 1 - (5 / 13)^2$$

$$\sin^2 x = 1 - 25 / 169$$

$$\sin^2 x = (169 - 25) / 169 = 144 / 169$$

$$\sin x = \pm 12 / 13$$

Since x lies in the fourth quadrant, the value of sin x is negative.

$$\sin x = -12/13$$
.

It can be written as

$$cosec x = 1/sin x$$

$$cosec x = 1 / -(12/13)$$

$$cosec x = -13/12$$

$$tan x = sin x/cos x$$

$$\tan x = (-12/13)/(5/13)$$

$$tan x = -12/5$$

$$\cot x = 1/\tan x$$

$$\cot x = -5/12$$

5. 5. $\tan x = -5/12$, x lies in second quadrant

Solution:

Given that $\tan x = -5/12$

It can be written as

$$\cot x = 1/\tan x = -1/(5/12) = -12/5$$

Using the trigonometry identity

$$1 + \tan^2 x = \sec^2 x$$

It can be written as

$$1 + (-5/12)^2 = \sec^2 x$$

Substituting the values

$$1 + 25/144 = sec^2x$$

$$sec^2x = (144 + 25)/144 = 169/144$$

$$\sec x = \pm \frac{13}{12}$$

Since x lies in the second quadrant, the value of sec x is negative.

$$\sec x = -13/12$$

We have $\cos x = 1 / \sec x = 1/(-13/12) = -12/13$.

tan x = sin x/cos x

$$\sin x = \tan x \cdot \cos x$$

$$\sin x = (-5/12) \times (-12/13)$$

$$\sin x = 5/13$$

cosec x = 1/sin x

cosec x = 1/(5/13)

cosec x = 13/5

Find the values of the trigonometric functions in Exercises 6 to 10: 6. sin 765°

Solution:

$$\sin 765^{\circ} = \sin (2 \times 360^{\circ} + 45^{\circ})$$

We know that the values of sin x repeat after an interval of 360° or 2 π .

$$\Rightarrow$$
 sin 765° = sin 45°

 \Rightarrow sin 765° = 1 / $\sqrt{2}$ (Using trigonometric table)

7. cosec (- 1410°)

Solution:

$$cosec (-1410^{\circ}) = cosec (-1410^{\circ} + 4 \times 360^{\circ})$$

We know that the values of cosec x (any trigonometric function) repeat after an interval of 360° or 2π .

$$\Rightarrow$$
 cosec (- 1410°) = cosec (30°)

$$\Rightarrow$$
 cosec (-1410°) = 2 (Using trigonometric table)

8. 8. $\tan 19 \pi / 3$

Solution:

It can be written as

$$\tan 19 \pi / 3 = \tan [3(2\pi) + \pi / 3]$$

We know that the values of $\tan x$ (any trigonometric function) repeat after an interval of 360° or 2π .

$$\Rightarrow$$
 tan 19 π / 3 = tan π / 3

$$\Rightarrow$$
 tan 19 π / 3 = tan 60 °

$$\Rightarrow$$
 tan 19 π / 3 = $\sqrt{3}$ (Using trigonometric table)

9. $\sin -11 \pi / 3$

Solution:

We know that the values of sin x repeat after an interval of 360° or 2 π .

It can be written as

sin - 11 π / 3 = sin [- 11 π /3 + 2 × 2 π] (to make the angle positive, we are adding the multiples of 2π)

$$\Rightarrow$$
 sin - 11 π / 3 = sin [- 11 π /3 + 4 π]

$$\Rightarrow$$
 sin - 11 π / 3 = sin [(- 11 π + 12 π)/ 3]

$$\Rightarrow$$
 sin - 11 π / 3 = sin [π / 3]

$$\Rightarrow$$
 sin - 11 π / 3 = $\sqrt{3}/2$ (Using trigonometric table)

10. cot (-15 π / 4)

Solution:

We know that the values of cot x repeat after an interval of 360° or 2 π .

It can be written as

cot - 15 π / 4 = cot [- 15 π / 4 + 2 × 2 π] (to make the angle positive, we are adding the multiples of 2 π)

As we know that value of $\cot \pi i s$ not defined.

$$\Rightarrow$$
 cot - 15 π / 4 = cot [- 15 π / 4 + 4 π]

$$\Rightarrow$$
 cot - 15 π / 4 = cot [(- 15 π + 16 π) / 4]

$$\Rightarrow$$
 cot - 15 π / 4 = cot [π / 4]

$$\Rightarrow$$
 cot - 15 π / 4 = 1 (Using trigonometric table)