EXERCISE 1.3

1. Make correct statements by filling in the symbols \subset or $\not\subset$ in the blank spaces :

(i)
$$\{2, 3, 4\} \dots \{1, 2, 3, 4, 5\}$$

Solution:-(i) $\{2, 3, 4\} \subset \{1, 2, 3, 4, 5\}$

Solution:- (ii) $\{a, b, c\} \not\subset \{b, c, d\}$

(iii) {x : x is a student of Class XI of your school}. . .{x : x student of your school}

Solution:- (iii) $\{x: x \text{ is a student of class } XI \text{ of your school}\} \subset \{x: x \text{ is student of your school}\}$

(iv) $\{x : x \text{ is a circle in the plane}\}$... $\{x : x \text{ is a circle in the same plane with radius 1 unit}\}$

Solution:- (iv) $\{x: x \text{ is a circle in the plane}\} \not\subset \{x: x \text{ is a circle in the same plane with radius 1 unit}\}$

(v) $\{x : x \text{ is a triangle in a plane}\} \dots \{x : x \text{ is a rectangle in the plane}\}$

Solution:- (v) $\{x: x \text{ is a triangle in a plane}\} \not\subset \{x: x \text{ is a rectangle in the plane}\}$

(vi) {x : x is an equilateral triangle in a plane} . . . {x : x is a triangle in the same plane}

Solution:- (vi) $\{x: x \text{ is an equilateral triangle in a plane} \subset \{x: x \text{ in a triangle in the same plane}\}$

(vii) {x : x is an even natural number} . . . {x : x is an integer}

Solution:-(vii) $\{x: x \text{ is an even natural number}\} \subset \{x: x \text{ is an integer}\}$

Examine whether the following statements are true or false:

- (i) $\{a, b\} \not\subset \{b, c, a\}$
- (ii) $\{a, e\} \subset \{x : x \text{ is a vowel in the English alphabet}\}$
- (iii) $\{1, 2, 3\} \subset \{1, 3, 5\}$
- (iv) $\{a\} \subset \{a, b, c\}$
- $(v) \{ a \} \in \{ a, b, c \}$
- (vi) $\{x : x \text{ is an even natural number less than } 6\} \subset \{x : x \text{ is a natural number which divides } 36\}$

Solution:

- (i) $\{a, b\} \not\subset \{b, c, a\}$ is FALSE as $\{a, b\} \subset \{b, c, a\}$
- (ii) $\{a, e\} \subset \{x : x \text{ is a vowel in the English alphabet}\}\$ is TRUE.
- (iii) $\{1, 2, 3\} \subset \{1, 3, 5\}$ is FALSE as $\{1, 2, 3\} \not\subset \{1, 3, 5\}$
- (iv) $\{a\} \subset \{a, b, c\}$ is TRUE.
- $(v) \{a\} \in \{a, b, c\} \text{ is FALSE}.$
- (vi) $\{x : x \text{ is an even natural number less than } 6\} \subset \{x : x \text{ is a natural number which divides } 36\} \text{ is TRUE as}$

 $\{x: x \text{ is an even natural number less than 6}\} = \{2, 4\}$

 $\{x: x \text{ is a natural number which divides 36}\}=\{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ and

- $\{2, 4\} \subset \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$
- 3. Let $A = \{ 1, 2, \{ 3, 4 \}, 5 \}$. Which of the following statements are incorrect and why?
- (i) $\{3, 4\} \subset A$
- (i) Incorrect as $3 \in \{3, 4\}$ but $3 \notin A$
- (ii) $\{3, 4\} \in A$

(ii) Correct because {3, 4} is an element of A.

(iii)
$$\{(3, 4)\}\subset A$$

(iii) Correct because $\{3, 4\} \in \{\{3, 4\}\}$ and $\{3, 4\} \in A$.

(iv)
$$1 \in A$$

(iv) Correct because 1 is an element of A.

(v)
$$1 \subset A$$

(v) Incorrect because an element of a set can never be a set and hence it cannot be a subset.

(vi)
$$\{1, 2, 5\} \subset A$$

(vi) Correct because each element of {1, 2, 5} is also an element of A.

(vii)
$$\{1, 2, 5\} \in A$$

(vii) Incorrect because {1, 2, 5} is not an element of A.

(viii)
$$\{1, 2, 3\} \subset A$$

(viii) Incorrect because $3 \in \{1, 2, 3\}$; however, $3 \notin A$.

(ix)
$$\phi \in A$$

(ix) Incorrect because f is not an element of A.

$$(x) \varphi \subset A$$

(x) Correct because f is a subset of every set.

$$(xi) \{ \phi \} \subset A$$

(xi) Incorrect because of $\Phi = \{\}$ and $\{\Phi\} = \{\{\}\}$ which is NOT present in A.

4. Write down all the subsets of the following sets

- (i) {a}
- (i) The subsets of $\{a\}$ are Φ and $\{a\}$.
- (ii) {a, b}
- (ii) The subsets of $\{a, b\}$ are Φ , $\{a\}$, $\{b\}$ and $\{a, b\}$.
- (iii) {1, 2, 3}

(iii) The subsets of $\{1, 2, 3\}$ are Φ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{2, 3\}$, $\{1, 3\}$ and $\{1, 2, 3\}$

(iv) φ

(iv) The only subset of Φ is Φ .

5. Write the following as intervals:

(i)
$$\{x : x \in \mathbb{R}, -4 < x \le 6\}$$

(ii)
$$\{x : x \in \mathbb{R}, -12 < x < -10\}$$

(iii)
$$\{x : x \in \mathbb{R}, 0 \le x < 7\}$$

(iv)
$$\{x : x \in R, 3 \le x \le 4\}$$

Solution:-

(i)
$$\{x : x \in \mathbb{R}, -4 < x \le 6\} = (-4, 6]$$

(ii)
$$\{x : x \in \mathbb{R}, -12 < x < -10\} = (-12, -10)$$

(iii)
$$\{x : x \in \mathbb{R}, 0 \le x < 7\} = [0, 7)$$

(iv)
$$\{x : x \in \mathbb{R}, 3 \le x \le 4\} = [3, 4]$$

6. Write the following intervals in set-builder form:

- (i) (-3, 0)
- (ii) [6, 12]
- (iii) (6, 12]
- (iv) [-23, 5)

Solution:-

(i)
$$(-3, 0) = \{x : x \in \mathbb{R}, -3 < x < 0\}$$

(ii)
$$[6, 12] = \{x : x \in \mathbb{R}, 6 \le x \le 12\}$$

(iii)
$$(6, 12] = \{x : x \in \mathbb{R}, 6 < x \le 12\}$$

(iv)
$$[-23, 5) = \{x : x \in \mathbb{R}, -23 \le x < 5\}$$

- 7. What universal set(s) would you propose for each of the following:
- (i) The set of right triangles.
- (ii) The set of isosceles triangles

Solution:-

- (i) For the set of right triangles, the universal set can be the set of triangles or the set of polygons.
- (ii) For the set of isosceles triangles,
- 8. Given the sets $A = \{1, 3, 5\}$, $B = \{2, 4, 6\}$ and $C = \{0, 2, 4, 6\}$
- 8}, which of the following may be considered as universal set (s) for all the three sets A, B and C

Solution:- (i) We see that

$$A \subset \{0, 1, 2, 3, 4, 5, 6\}$$

$$B \subset \{0, 1, 2, 3, 4, 5, 6\}$$

$$C \not\subset \{0, 1, 2, 3, 4, 5, 6\}$$

Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.

Solution:- (ii) A
$$\not\subset$$
 Φ , B $\not\subset$ Φ C $\not\subset$ Φ

Therefore, Φ cannot be the universal set for sets A, B, and C.

Solution:- (iii) We see that

$$A \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$B \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$C \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is a universal set for the sets A, B, and C.

(iv) $\{1,2,3,4,5,6,7,8\}$

Solution:- (iv) We see that

 $A \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $B \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $C \not\subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B, and C