EXERCISE 1.4

1. Find the union of each of the following pairs of sets:

(i)
$$X = \{1, 3, 5\} Y = \{1, 2, 3\}$$

Solution:- (i) When $X = \{1, 3, 5\}$ and $Y = \{1, 2, 3\}$,

$$X \cup Y = \{1, 2, 3, 5\}$$

(ii)
$$A = [a, e, i, o, u] B = \{a, b, c\}$$

Solution:- (ii) When $A = \{a, e, i, o, u\}$ and $B = \{a, b, c\}$,

$$A \cup B = \{a, b, c, e, i, o, u\}$$

(iii) $A = \{x : x \text{ is a natural number and multiple of 3} B = \{x : x \text{ is a natural number less than 6} \}$

Solution:- (iii) $A = \{ x : x \text{ is a natural number and multiple of 3} = \{3, 6, 9.... \}$

B = $\{ x : x \text{ is a natural number less than 6} \} = \{1, 2, 3, 4, 5\}$

Then A \cup B = {1, 2, 4, 5, 3, 6, 9, 12....}

Therefore, A \cup B = {x : x = 1, 2, 4, 5 or a multiple of 3}

(iv) A = $\{x : x \text{ is a natural number and } 1 < x \le 6 \}$ B = $\{x : x \text{ is a natural number and } 6 < x < 10 \}$

Solution:- (iv) A = $\{ x : x \text{ is a natural number and } 1 < x \le 6 \} = \{2, 3, 4, 5, 6\}$

B = $\{ x : x \text{ is a natural number and } 6 < x < 10 \} = \{7, 8, 9\}$

Then A \cup B = {2, 3, 4, 5, 6, 7, 8, 9}

Therefore,

A \cup B = {x : x \in N and 1 < x < 10}

$$(v) A = \{1, 2, 3\}, B = \varphi$$

Solution:- (v) When $A = \{1, 2, 3\}$ and $B = \Phi$,

$$A \cup B = \{1, 2, 3\}$$

2. Let A = { a, b }, B = {a, b, c}. Is A \subset B ? What is A \cup B ?

Solution:- We say that $A \subset B$ (which is read as "A is a subset of B") if every element of A is present in B.

Here,

$$A = \{a, b\} \text{ and } B = \{a, b, c\}$$

We see that every element of A is present in B.

Hence, $A \subset B$.

A u B is read as the "union of A and B" and it is the set formed with all elements of both A and B.

Thus,

$$A \cup B = \{a, b, c\}$$

3. If A and B are two sets such that $A \subset B$, then what is $A \cup B$?

Solution:- A set is a well-defined collection of numbers, alphabets, objects, or any items.

A subset is a part of the set.

Set A is a subset of set B if all the elements in set A are present in set B.

Here,

A is called the subset, and B is called the superset.

If A and B are two sets such that $A \subset B$,

it means B consists all the elements of A.

Thus,

 $A \cup B = B$.

4. If A = $\{1, 2, 3, 4\}$, B = $\{3, 4, 5, 6\}$, C = $\{5, 6, 7, 8\}$ and D = $\{7, 8, 9, 10\}$; find

(i) A ∩ B

Solution:- (i) A \cup B = {1, 2, 3, 4, 5, 6}

(ii) A ∪ C

Solution:- (ii) A \cup C = {1, 2, 3, 4, 5, 6, 7, 8}

(iii) B ∪ C

Solution:- (iii) B \cup C = {3, 4, 5, 6, 7, 8}

(iv) B ∪ D

Solution:- (iv) B \cup D = {3, 4, 5, 6, 7, 8, 9, 10}

 $(v) A \cup B \cup C$

Solution:- (v) A \cup B \cup C = {1, 2, 3, 4, 5, 6, 7, 8}

(vi) $A \cup B \cup D$

Solution:- (vi) $A \cup B \cup D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

(vii) B ∪ C ∪ D

Solution:- (vii) $B \cup C \cup D = \{3, 4, 5, 6, 7, 8, 9, 10\}$

5. Find the intersection of each pair of sets of question 1 above

 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, C = \{5, 6, 7, 8\}$ and $D = \{7, 8, 9, 10\};$

(i) A ∩ B

(i) $A \cap B = \{3, 4\}$

(ii) $A \cap C$

Solution:- (ii) $A \cap C = \emptyset$

(iii) B ∩ C

Solution:- (iii) $B \cap C = \{5, 6\}$

(iv) $B \cap D$

Solution:- (iv) $B \cap D = \emptyset$

(v) $A \cap B \cap C$

Solution:- (v) $A \cap B \cap C = \emptyset$

(vi) $A \cap B \cap D$

Solution:- (vi) $A \cap B \cap D = \emptyset$

(vii) $B \cap C \cap D$

Solution:- (vii) B \cap C \cap D= \emptyset

6. If A = { 3, 5, 7, 9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17}; find

(i) $A \cap B$ (ii) $B \cap C$ (iii) $A \cap C \cap D$ (iv) $A \cap C$ (v) $B \cap D$

 $\text{(vi) A} \cap (\mathsf{B} \cup \mathsf{C}) \quad \text{(vii) A} \cap \mathsf{D} \quad \text{(viii) A} \cap (\mathsf{B} \cup \mathsf{D}) \quad \text{(ix) (A} \cap \mathsf{B}) \cap (\mathsf{B} \cup \mathsf{C})$

 $(x) (A \cup D) \cap (B \cup C)$

Solution:-

(i) $A \cap B = \{7, 9, 11\}$

(ii) $B \cap C = \{11, 13\}$

(iii) $A \cap C \cap D = \{A \cap C\} \cap D$ = $\{11\} \cap \{15, 17\}$ = Φ

(iv) $A \cap C = \{11\}$

(v) B \cap D = Φ

(vi)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

= $\{7, 9, 11\} \cup \{11\}$
= $\{7, 9, 11\}$

(vii)
$$A \cap D = \Phi$$

(viii)
$$A \cap (B \cup D) = (A \cap B) \cup (A \cap D)$$

= $\{7, 9, 11\} \cup \Phi$
= $\{7, 9, 11\}$

(ix)
$$(A \cap B) \cap (B \cup C) = \{7, 9, 11\} \cap \{7, 9, 11, 13, 15\}$$

= $\{7, 9, 11\}$

(x) (A
$$\cup$$
 D) \cap (B \cup C) = {3, 5, 7, 9, 11, 15, 17} \cap {7, 9, 11, 13, 15}
= {7, 9, 11, 15}

7. If A = $\{x : x \text{ is a natural number }\}$, B = $\{x : x \text{ is an even natural number}\}$

 $C = \{x : x \text{ is an odd natural number}\}$ and $D = \{x : x \text{ is a prime number}\}$, find

(i)
$$A \cap B$$
 (ii) $A \cap C$ (iii) $A \cap D$ (iv) $B \cap C$ (v) $B \cap D$ (vi) $C \cap D$

8. Which of the following pairs of sets are disjoint

(i)
$$\{1, 2, 3, 4\}$$
 and $\{x : x \text{ is a natural number and } 4 \le x \le 6 \}$

Solution:-

(i) The first set is {1, 2, 3, 4}

The second set is $\{x : x \text{ is a natural number and } 4 \le x \le 6\}$

Now,

$$\{1, \, 2, \, 3, \, 4\} \cap \{4, \, 5, \, 6\} = \{4\} \neq \Phi$$

Therefore, this pair of sets is NOT disjoint.

(ii) { a, e, i, o, u } and { c, d, e, f }

Solution:-

(ii)
$$\{a, e, i, o, u\} \cap \{c, d, e, f\} = \{e\} \neq \Phi$$

Therefore, this pair of sets are NOT disjoint.

(iii) {x : x is an even integer } and {x : x is an odd integer}

Solution:-

(iii) $\{x : x \text{ is an even integer}\} \cap \{x : x \text{ is an odd integer}\} = \Phi$ because there is no integer which can be both even and odd.

Therefore, this pair of sets is disjoint

9. If A =
$$\{3, 6, 9, 12, 15, 18, 21\}$$
, B = $\{4, 8, 12, 16, 20\}$, C = $\{2, 4, 6, 8, 10, 12, 14, 16\}$, D = $\{5, 10, 15, 20\}$; find

(i)
$$A-B$$
 (ii) $A-C$ (iii) $A-D$ (iv) $B-A$ (v) $C-A$ (vi) $D-A$ (vii) $B-C$ (viii) $B-D$ (ix) $C-B$ (x) $D-B$ (xi) $C-D$ (xii) $D-C$

Solution:- The given sets are:

$$A = \{3, 6, 9, 12, 15, 18, 21\}$$

$$B = \{4, 8, 12, 16, 20\}$$

$$C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}$$

$$D = \{5, 10, 15, 20\}$$

Thus,

(i)
$$A - B = \{3, 6, 9, 15, 18, 21\}$$

(ii)
$$A - C = \{3, 9, 15, 18, 21\}$$

(iii) A - D =
$$\{3, 6, 9, 12, 18, 21\}$$

(iv) B - A =
$$\{4, 8, 16, 20\}$$

(v) C - A =
$$\{2, 4, 8, 10, 14, 16\}$$

(vi) D - A =
$$\{5, 10, 20\}$$

(vii) B - C =
$$\{20\}$$

(viii) B - D =
$$\{4, 8, 12, 16\}$$

(ix)
$$C - B = \{2, 6, 10, 14\}$$

$$(x) D - B = \{5, 10, 15\}$$

(xi)
$$C - D = \{2, 4, 6, 8, 12, 14, 16\}$$

(xii) D - C =
$$\{5, 15, 20\}$$

10. If $X = \{ a, b, c, d \}$ and $Y = \{ f, b, d, g \}$, find

Solution:- The given sets are:

$$X = \{ a, b, c, d \}$$
and $Y = \{ f, b, d, g \}.$

Thus,

(i)
$$X - Y = \{a, c\}$$

(ii)
$$Y - X = \{ f, g \}$$

(ii)
$$X \cap Y = \{b, d\}$$

11. If R is the set of real numbers and Q is the set of rational numbers, then what is R - Q?

Solution:-It is given that

R: a set of real numbers

Q: a set of rational numbers

The difference between two sets A and B is a set denoted by A - B and is obtained by writing the elements of A that are NOT in B in a set.

Therefore,

R - Q is a set consiting of real numbers that are NOT rational.

i.e., R - Q is a set of irrational numbers

- 12. State whether each of the following statement is true or false. Justify your answer.
- (i) { 2, 3, 4, 5 } and { 3, 6} are disjoint sets.

Solution:-(i) We have $3 \in \{2, 3, 4, 5\}$ and $3 \in \{3, 6\}$

Therefore, $\{2, 3, 4, 5\} \cap \{3, 6\} = \{3\}$ and hence they are NOT disjoint.

Thus, the given statement is FALSE.

(ii) { a, e, i, o, u } and { a, b, c, d } are disjoint sets.

Solution:- (ii) We have $a \in \{a, e, i, o, u\}$ and $a \in \{a, b, c, d\}$

Therefore, $\{a, e, i, o, u\} \cap \{a, b, c, d\} = \{a\}$ and hence they are NOT disjoint.

Thus, the given statement is FALSE.

(iii) { 2, 6, 10, 14 } and { 3, 7, 11, 15} are disjoint sets.

Solution:- (iii) We have $\{2, 6, 10, 14\} \cap \{3, 7, 11, 15\} = \Phi$ and hence they are disjoint.

Thus, the given statement is TRUE.

(iv) { 2, 6, 10 } and { 3, 7, 11} are disjoint sets.

Solution: (iv) We have $\{2, 6, 10\} \cap \{3, 7, 11\} = \Phi$ and hence they are disjoint.

Thus, the given statement is TRUE