UNIT-IV: VECTO

Syllabus

Q. 3. The value of
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k})$$

(A) 0 **(B)**

Ans. Option (C) is correct.

Explanation:
$$\hat{i}.(\hat{j}\times\hat{k})+\hat{j}.(\hat{i}\times\hat{k})+\hat{k}.(\hat{i}\times\hat{j})$$

Q. 4. If θ is the angle between any then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to θ

$$(\mathbf{A}) \ 0 \tag{B}$$

(C)
$$\frac{\pi}{2}$$
 (D)

Ans. Option (B) is correct.

Therefore, the area of the $|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$ sq. units.

Q.7. If \vec{a} is a non-zero vector of a non-zero scalar, then $\lambda \vec{a}$ is un

$$(\mathbf{A}) \ \lambda = 1 \tag{B}$$

(C)
$$a = |\lambda|$$
 (D)

Ans. Option (D) is correct.

Explanation:

Vector $\lambda \vec{a}$ is a unit vector if

$$\begin{vmatrix} \lambda \vec{a} \end{vmatrix} = 1$$

$$\Rightarrow \qquad |\lambda| |\vec{a}| = 1$$

$$\Rightarrow \qquad \qquad a = \frac{1}{|\lambda|}$$

(C)
$$\frac{\pi}{2}$$
 (D)

Ans. Option (B) is correct.

Explanation: Here, $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 4$ and \vec{a} . We know that,

$$\Rightarrow$$
 $2\sqrt{3} = \sqrt{3.4.\text{co}}$

$$\vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta$$

$$\Rightarrow 2\sqrt{3} = \sqrt{3}.4.\cos\theta$$

$$\Rightarrow \cos\theta = \frac{2\sqrt{3}}{4\sqrt{3}}$$

$$= \frac{1}{2}$$

$$\therefore \theta = \frac{\pi}{3}$$

$$=\frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

Q.13. Find the value of λ suc

$$\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$

$$12 = 10 \times 2 \cot \theta$$

$$\Rightarrow \cos \theta = \frac{12}{20}$$

$$= \frac{3}{5}$$

$$\Rightarrow \sin \theta = \sqrt{1 - \cos \theta}$$

$$\sin \theta = \pm \frac{4}{5}$$

$$\therefore |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin \theta$$

$$= 10 \times 2 \times \theta$$

$$= 16$$

Q. 18. The vectors
$$\lambda \hat{i} + \hat{j} + 2\hat{k}$$
, $\hat{i} + \hat{j}$ are coplanar, if

(A) $\lambda = -2$ (B)

at
$$\lambda = -3$$
$$|\lambda \vec{a}| = |0|4 = 0$$
at
$$\lambda = 0$$
and
$$|\lambda \vec{a}| = |2|$$
$$4 = 8,$$
at
$$\lambda = 2$$

So, the range of $|\lambda \vec{a}|$ is [0,12].

Q. 23. The number of vectors of unit to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$

(A) one

(C) three

Ans. Option (B) is correct.

Explanation: The number length perpendicular to the (say) $\vec{c} = \pm (\vec{a} \times \vec{b})$.

 $\vec{c} = \pm (\vec{a} \times \vec{b})$

Reason (R): $\vec{a}.(\vec{b}+\vec{c})=\vec{a}.\vec{b}$ Ans. Option (B) is correct.

Explanation: Assertion (A) are individually correct.
Reason (R) is the distribut product.

Q. 4. Assertion (**A**): The area of diagonals \vec{a} and \vec{b} is $\frac{1}{2} |\vec{a} \times \vec{b}|$

Reason (**R**): If \vec{a} and \vec{b} resides of a triangle, then the a obtained by evaluating $|\vec{a} \times \vec{b}|$ **Ans. Option** (**C**) is correct.

Explanation: If \vec{a} and \vec{b} regarded sides of a triangle, then the be obtained by evaluating $\frac{1}{2}$

Q. 2. Write the vector in standard \hat{k} (where \hat{i} , \hat{j} and \hat{k} are the three axes).

(A)
$$15\hat{i} + 0\hat{j} + 0\hat{k}$$
, $0\hat{i} + 8\hat{j} + 6\hat{k}$

(B)
$$0\hat{i} + 6\hat{j} + 8\hat{k}, 15\hat{i} + 0\hat{j} + 0\hat{k}$$

(C)
$$0\hat{i} + 0\hat{j} + 0\hat{k}$$
, $0\hat{i} + 8\hat{j} + 6\hat{k}$

(**D**)
$$15\hat{i} + 0\hat{j} + 0\hat{k}$$
, $6\hat{i} + 8\hat{i} + 0\hat{k}$

Ans. Option (A) is correct.

Q. 3. What are the magnitudes of and in what units?

Ans. Option (C) is correct.

Explanation:

$$|\vec{A}| = \sqrt{(15)^2 + 0^2 + 0^2}$$

Explanation:

$$|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a})$$

$$= |\vec{a}|^2 + |\vec{b}|$$

$$= 1 + 1 - 2(1)$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 2 - 2\cos\theta$$

$$= 2(1 - \cos\theta)$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 2\left(2\sin^2\frac{\theta}{2}\right)$$

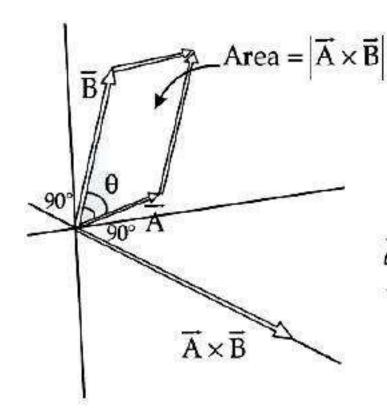
$$\Rightarrow |\vec{a} - \vec{b}|^2 = 4\sin^2\frac{\theta}{2}$$

$$|\vec{a} - \vec{b}|^2 = 2\sin\frac{\theta}{2}$$

Q.4. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be uni

$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c} = 0$$
 and angle 1

$$\frac{\pi}{a}$$
 then $a =$



$$\vec{A} \times \vec{I}$$

 \hat{a}_n is a unit to the plan

Q. 1.
$$\hat{i} \times \hat{j} =$$
______.

(A)
$$\hat{k}$$

Ans. Option (A) is correct.

Explanation:
$$\hat{i} \times \hat{j} = \hat{k}$$

Q. 2.
$$\hat{i} \cdot (\hat{j} \times \hat{k}) = \underline{\qquad}$$
.
(A) \hat{k}