

BASIC CONCEPTS

Arrow diagram for bound

2. Corner points of the fe (1, 1) and (3, 0). Let Z = occurs at (3, 0) and (1, 1

(a)
$$p = 2q$$

3. Which of the following

(a)
$$\{(x, y): x^2 + y^2 \ge 5\}$$

(c)
$$\{(x, y): 3x^2 + 4y^2 \ge 5$$

4. Let Z_1 and Z_2 are two o

(a)
$$Z = \lambda Z_1 + (1 - \lambda) Z_2$$

(b)
$$Z = \lambda Z_1 + (1 - \lambda) Z_2$$

(c)
$$Z = \lambda Z_1 + (1 + \lambda) Z_2$$

(*d*)
$$Z = \lambda Z_1 + (1 + \lambda) Z_2$$

5. The maximum value of

6. Consider a LPP given b

12. Objective function of a

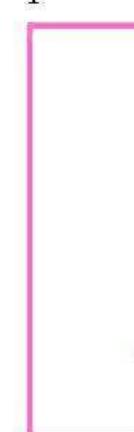
- (a) constraint
- (c) a relation between t
- 13. The objective function $3x + 4y \le 24, 8x + 6y \le 24$
 - (a) at only one point
 - (c) at an infininte numl
- 14. The point at which the $2x + y \le 95$, $x, y \ge 0$ is
 - (a) (30, 25)
 - 15. By the graphical metho

Maximize $Z = 3x_1 + 5x_2$ subject to $3x_1 + 2x_2 \le 1$

$$x_1 \leq 4$$

$$x_2 \le 6$$

$$x_{1}, x_{2} \ge 0$$
 is

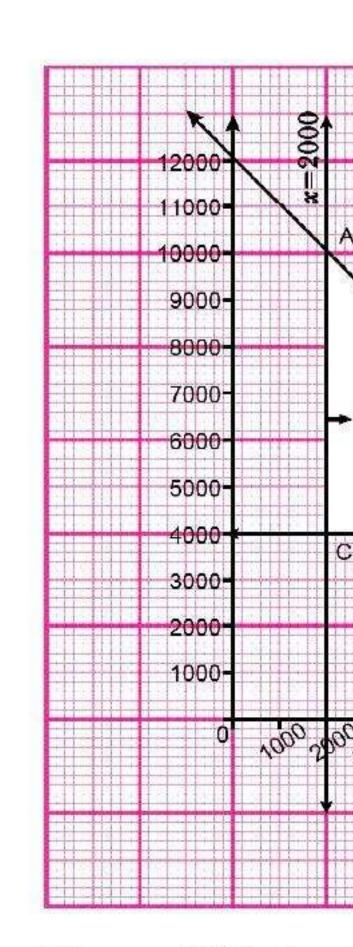

(a)
$$x_1 = 2, x_2 = 0, z = 6$$

24. Feasible region shaded point

$$(a)$$
 $(0,0)$

25. The maximum value of

she has to invest at leas share A is 8% per annua


Answer the questions

(i) If Dr. Ritam inves

(a)
$$x = 2000$$

(ii) If she invest ₹y in

(a)
$$y = 4000$$

Answer the questions

(i) If Ramprakash pu 20 items, then wh

(a)
$$x + y = 20$$

(ii) If Ramprakash ha

(a)
$$x + y \le 5760$$

(c)
$$360x + 240y \ge 5$$

(iii) If he expects to se profit Z is express

(a)
$$Z = 18x + 22y$$

(iv) If he sells all the f

(a)
$$x = 10, y = 12$$

(v) The maximum pro

Answer the questions

(i) If there be x ticket of the following is

(a)
$$x + y = 200$$

(ii) Which pair of cor

(iii) Profit on executive Profit on executive

 \therefore Total profit Z =

Option (b) is correct

(iv) We have

Z = 400x + 300y w

 $x + y \le 200$

 $x \leq 40$

 $x \ge 20$, $y \ge 0$

Here, ABCD in

C(40, 160), D(20, 18

Now we evaluate.

Corner Point

A(20, 0)

B(40,0)

X'

Reason (R): A region points l

Answers

1. (b)

2. (b)

i.e., $Z = \lambda Z_1 + (1 - \lambda) Z_2$ gives optimal solution. Option (b) is correct.

5. B(0, 10) A(10, 0) (0, 0)

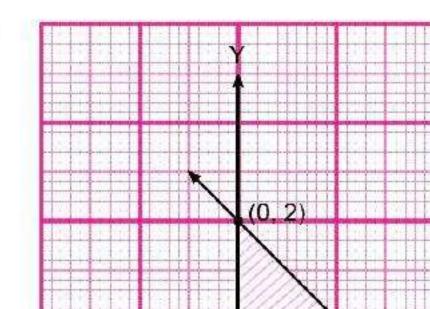
> Feasible region is shaB(0, 10)Z(0, 0) = 0

Feasible region is shade

$$\left(\frac{20}{3}, \frac{20}{3}\right)$$
, and $(0, 10)$

$$Z(0,0) = 0$$

$$Z(10,0) = 10$$


$$Z\left(\frac{20}{3}, \frac{20}{3}\right) = \frac{20}{3} + 20 = 0$$

$$Z(0, 10) = 30 \leftarrow Max$$

$$Z_{\text{max}} = 30 \text{ obtained at } (0)$$

Option (b) is correct.

11.

Feasible region is shade

$$Z\left(0,0\right)=0$$

$$Z(0,6) = 18$$

$$Z\left(\frac{24}{7}, \frac{24}{7}\right) = \frac{96}{7}, \frac{72}{7} = -\frac{1}{2}$$
$$Z\left(5, \frac{4}{3}\right) = 20 + 4 = 24 \leftarrow$$

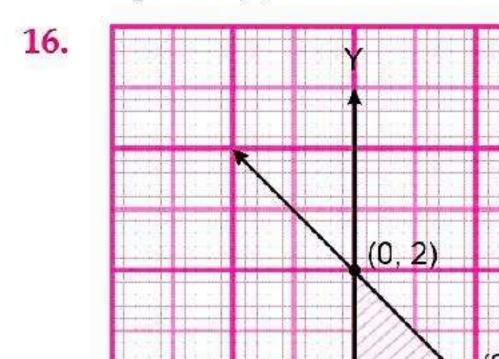
$$Z\left(5, \frac{4}{3}\right) = 20 + 4 = 24 \leftarrow$$

$$Z(5,0) = 20$$

As Z has maximum val

So at any line segment j Hence there are infinite Hence option (c) is corre Feasible region is shade and (0, 6).

$$Z(0,0)=0$$


$$Z(4,0) = 12$$

$$Z(4,3) = 12 + 15 = 27$$

$$Z(2,6) = 6 + 30 = 36 \leftarrow$$

$$Z(0,6) = 30$$

Maximum value of Z is Option (b) is correct.

- \therefore Option (c) is the corr
- **20.** Z = 2x + 3y

$$Z(3,2) = 2 \times 3 + 3 \times 2$$

= 6 + 6

= 12

Option (c) is correct.

- 21. Since Z occurs maximum Option (d) is correct.
- 22. Since (0, 0) does not satisfie., $0 + 0 \not\ge 1$ $\Rightarrow (0, 0)$ not lie in feasiboration (b) is correct.
- **23.** Feasible region for an L Option (*c*) is correct.