U١

Syllabus

(5, 0)	15 ←
(6, 5)	-2
(6, 8)	-14
(4, 10)	-28
(0, 8)	-32

Hence, the minimum of Z o minimum value is (-32).

Q. 3. Refer to Q.2 of multiple choice of Z occurs at

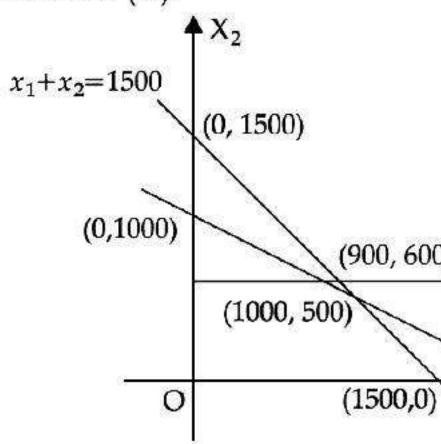
(A) (5, 0) (B)

(C) (6, 8) (D)

Ans. Option (A) is correct.

Explanation: Maximum of Z

Q. 4. Refer to Q.2 of multiple choice value of Z + Minimum value (A) 13 (B)

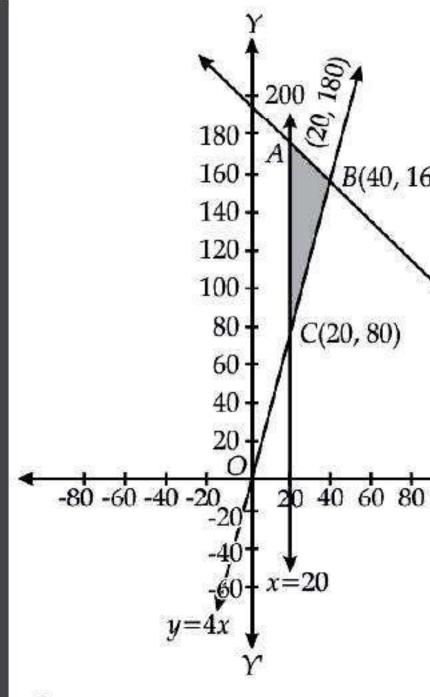

ASSERTION

Directions: In the following of Assertion (A) is followed Reason (R). Mark the correct

- (A) Both A and R are true and R is to of A
- (B) Both A and R are true but I explanation of A
- (C) A is true but R is false
- (**D**) A is false but R is True
- Q. 1. Assertion (A): Feasible region which satisfy all of the gion objective function too.

Reason (R): The optimal value function is attained at the poi

Reason (R):



From the graph, it is clear that outside.

Ans. Option (A) is correct.

Explanation: Assertion (A) are correct, Reason (R) is the of Assertion (A).

The corner points are A(2C(20, 80))

Evaluating the objective fun Z = 1,000x

III. Read the following text and questions on the basis of the

A fruit grower can use two ty garden, brand *P* and brand *Q* of nitrogen, phosphoric acid, in a bag of each brand are gindicate that the garden need phosphoric acid, at least 270 most 310 kg of chlorine.

	kg per ba	
	Brand	
Nitrogen	3	
Phosphoric acid	1	
Potash	3	
Chlorine	1.5	

Q. 1. The Objective function to minimize nitogen added to garden?
(A) Maximize Z = 3x + 4y