Linear Programming

Question 1.

 $Z = 20x_1 + 20x_2$, subject to $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + 2x_2 \ge 8$, $3x_1 + 2x_2 \ge 15$, $5x_1 + 2x_2 \ge 20$. The minimum value of Z occurs at

- (a)(8,0)
- (b) $\left(\frac{5}{2}, \frac{15}{4}\right)$
- (c) $\left(\frac{7}{2}, \frac{9}{4}\right)$
- (d)(0, 10)

Answer:

(c) $\left(\frac{7}{2}, \frac{9}{4}\right)$

Question 2.

Z = 7x + y, subject to $5x + y \ge 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$. The minimum value of Z occurs at

- (a) (3, 0)
- (b) $\left(\frac{1}{2}, \frac{5}{2}\right)$
- (c)(7,0)
- (d)(0,5)

Answer:

(d)(0,5)

Question 3.

Minimize $Z = 20x_1 + 9x_2$, subject to $x_1 \ge 0$, $x_2 \ge 0$, $2x_1 + 2x_2 \ge 36$, $6x_1 + x_2 \ge 60$.

- (a) 360 at (18, 0)
- (b) 336 at (6, 4)
- (c) 540 at (0, 60)
- (d) 0 at (0, 0)

Answer:

(b) 336 at (6, 4)

Question 4.

Z = 8x + 10y, subject to $2x + y \ge 1$, $2x + 3y \ge 15$, $y \ge 2$, $x \ge 0$, $y \ge 0$. The minimum value of Z occurs at

- (a) (4.5, 2)
- (b) (1.5, 4)
- (c)(0,7)
- (d)(7,0)

(b) (1.5, 4)

Question 5.

 $Z = 4x_1 + 5x_2$, subject to $2x_1 + x_2 \ge 7$, $2x_1 + 3x_2 \le 15$, $x_2 \le 3$, $x_1, x_2 \ge 0$. The minimum value of Z

occurs at

- (a) (3.5, 0)
- (b)(3,3)
- (c)(7.5,0)
- (d)(2,3)

Answer:

(a)(3.5,0)

Question 6.

The maximum value of f = 4x + 3y subject to constraints $x \ge 0$, $y \ge 0$, $2x + 3y \le 18$; $x + y \ge 10$ is

- (a) 35
- (b) 36
- (c) 34
- (d) none of these

Answer:

(d) none of these

Question 7.

Objective function of a L.P.P.is

- (a) a constant
- (b) a function to be optimised
- (c) a relation between the variables
- (d) none of these

Answer:

(b) a function to be optimised

Question 8.

The optimal value of the objective function is attained at the points

- (a) on X-axis
- (b) on Y-axis
- (c) which are comer points of the feascible region
- (d) none of these

Answer:

(c) which are comer points of the feascible region

Question 9.

In solving the LPP:

"minimize f = 6x + 10y subject to constraints $x \ge 6$, $y \ge 2$, $2x + y \ge 10$, $x \ge 0$, $y \ge 0$ " redundant constraints are

- (a) $x \ge 6, y \ge 2$
- (b) $2x + y \ge 10$, $x \ge 0$, $y \ge 0$
- (c) $x \ge 6$
- (d) none of these

Answer:

(b) $2x + y \ge 10$, $x \ge 0$, $y \ge 0$

Question 10.

Region represented by $x \ge 0$, $y \ge 0$ is

- (a) first quadrant
- (b) second quadrant
- (c) third quadrant
- (d) fourth quadrant

Answer:

(a) first quadrant

Question 11.

The region represented by the inequalities

 $x \ge 6$, $y \ge 2$, $2x + y \le 0$, $x \ge 0$, $y \ge 0$ is

- (a) unbounded
- (b) a polygon
- (c) exterior of a triangle
- (d) None of these

Answer:

(d) None of these

Question 12.

The minimum value of Z = 4x + 3y subjected to the constraints $3x + 2y \ge 160$, $5 + 2y \ge 200$, $2y \ge 80$; $x, y \ge 0$ is

- (a) 220
- (b) 300
- (c) 230
- (d) none of these

Answer:

(a) 220

Question 13.

The maximum value of Z = 3x + 2y, subjected to $x + 2y \le 2$, $x + 2y \ge 8$; $x, y \ge 0$ is

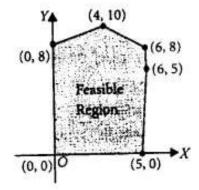
- (a) 32
- (b) 24

- (c) 40
- (d) none of these

(d) none of these

Question 14.

Maximize Z = 11x + 8y, subject to $x \le 4$, $y \le 6$, $x \ge 0$, $y \ge 0$.

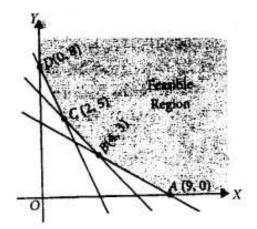

- (a) 44 at (4, 2)
- (b) 60 at (4, 2)
- (c) 62 at (4, 0)
- (d) 48 at (4, 2)

Answer:

(b) 60 at (4, 2)

Question 15.

The feasible, region for an LPP is shown shaded in the figure. Let Z = 3x - 4y be the objective function. A minimum of Z occurs at


- (a)(0,0)
- (b)(0,8)
- (c)(5,0)
- (d)(4, 10)

Answer:

(b) (0, 8)

Question 16.

The feasible region for an LPP is shown shaded in the following figure. Minimum of Z = 4x + 3y occurs at the point

- (a)(0,8)
- (b)(2,5)
- (c)(4,3)
- (d)(9,0)

(b)(2,5)

Question 17.

Maximize Z = 3x + 5y, subject to $x + 4y \le 24$, $3x + y \le 21$, $x + y \le 9$, $x \ge 0$, $y \ge 0$.

- (a) 20 at (1, 0)
- (b) 30 at (0, 6)
- (c) 37 at (4, 5)
- (d) 33 at (6, 3)

Answer:

(c) 37 at (4, 5)

Question 18.

Maximize Z = 4x + 6y, subject to $3x + 2y \le 12$, $x + y \ge 4$, $x, y \ge 0$.

- (a) 16 at (4, 0)
- (b) 24 at (0, 4)
- (c) 24 at (6, 0)
- (d) 36 at (0, 6)

Answer:

(d) 36 at (0, 6)

Question 19.

Maximize Z = 6x + 4y, subject to $x \le 2$, $x + y \le 3$, $-2x + y \le 1$, $x \ge 0$, $y \ge 0$.

- (a) 12 at (2, 0)
- (b) $\frac{140}{3}$ at $(\frac{2}{3}, \frac{1}{3})$
- (c) 16 at (2, 1)
- (d) 4 at (0, 1)

(c) 16 at (2, 1)

Question 20.

Maximize $Z = 10 \times 1 + 25 \times 2$, subject to $0 \le x1 \le 3$, $0 \le x2 \le 3$, $x1 + x2 \le 5$.

- (a) 80 at (3, 2)
- (b) 75 at (0, 3)
- (c) 30 at (3, 0)
- (d) 95 at (2, 3)

Answer:

(d) 95 at (2, 3)