

BASIC CONCEPTS

1. Continuity and Discontinuity point a of its domain if

$$\lim_{x \to a^{-}} f(x), \lim_{x \to a^{+}} f(x), f(a)$$

A function f(x) is said to b

2. Properties of Continuous

(ii)
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$

(iii)
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

(iv)
$$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$$

(v)
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}$$

(vi)
$$\frac{d}{dx}\operatorname{cosec}^{-1}x = \frac{-1}{x\sqrt{x^2 - x^2}}$$

5. Chain Rule: Chain rule is

if y is a function of x, then

6. **Parametric Form:** Sometime terms of another variable form and t is called the parametric form and t is called the parametric form.

- (*iv*) Limits at infinity: This Procedure to solve the
 - (a) Write the given ex
 - (b) Divide the numer
 - (c) Use the result $\lim_{x\to a}$
 - (d) Simplify and get

MULTIPLE CHOICE QU

Choose and write the correct

- 1. The function $f: R \to R$
 - (a) continuous as well
 - (b) not continuous but
 - (c) continuous but not
 - (d) neither continuous

- 9. The function $f(x) = \frac{x}{x(x)}$
 - (a) exactly one point
 - (c) exactly three points
- 10. If $f(x) = x^2 \sin \frac{1}{x}$, when continuous at x = 0, is

 (a) 0
- 11. The function f(x) = |x|
 - (a) continuous at x = 0
 - (c) discontinuous at x =
- 12. The function $f(x) = \frac{4-4}{4x}$
 - (a) discontinuous at on
 - (c) discontinuous at ex
- 13. The set of points where

22. If
$$f(x) = x - 3$$
 and $g(x) = x - 3$

(a)
$$f(x) + g(x)$$

23. The set of points where

24. Let
$$f(x) = \begin{cases} \cos[x], & x \ge \\ |x| + a, & x < \end{cases}$$

25. Let
$$f(x) = \begin{cases} x[x-1], \\ [x](x-1), \end{cases}$$

- (a) f(x) is continuous ev
- (b) f(x) is not continuou
- (c) f(x) is not differentiate

32. The function
$$f(x) = \begin{cases} si \\ si \end{cases}$$

- (a) is continuous.
- (c) has jump discontinu

33. The function
$$f(x) = \begin{cases} 2 \\ 2 \end{cases}$$

- (a) is continuous.
- (c) has jump discontinu

34. The function
$$f(x) = \begin{cases} \frac{\mathbf{s}}{\mathbf{s}} \\ \frac{$$

- (a) is continuous.
- (c) has jump discontinu

35. If
$$f(x) = |x| + |x - 2|$$
, the (a) $f(x)$ is continuous at

42. If
$$f(x) = x''$$
, then the val

$$f(1) + \frac{f(1)}{1!} + \frac{f^2(1)}{2!} + \frac{f}{2!}$$

is the rth derivative of f

43. If f(x), g(x), h(x) are poly

$$F(x) = \begin{cases} f(x) & g(x) \\ f'(x) & g'(x) \end{cases}$$

$$f''(x) & g''(x) \end{cases}$$

$$(u) -1$$

44. The derivative of f(tan

(a)
$$\sqrt{2}$$

45. If g is inverse function

(a)
$$\sin(g(x))$$

(c) differentiable at
$$x =$$

(d) differentiable at
$$x =$$

54. Let
$$f(x) = x - |x|$$
 then $f(x) = x - |x|$

(a) differentiable
$$\forall x \in$$

(b) continuous
$$\forall x \in \mathbb{R}$$

(d) discontinuous at
$$x =$$

55. Let
$$f(x) = \begin{cases} -1, & -2 \\ x^2 - 1, & 0 \end{cases}$$

$$[x-1,$$

56. Let
$$f(x)$$
 be differentiable

$$f\left(\frac{x+y}{1-xy}\right) = f(x) + f(y)$$

If
$$\lim_{x\to 0} \frac{f(x)}{x} = \frac{1}{3}$$
 then $f(x)$

62. Let
$$f(x) = x^{3/2} - \sqrt{x^3 + x^2}$$

- (a) LHD at x = 0 exists
- (b) f(x) is differentiable
- (c) RHD at x = 0 exists
- (d) None of these
- 63. Number of points at w

(a) 2

64. If
$$f(x) = \frac{\sin 4\pi \left[\pi^2 x\right]}{7 + \left[x\right]^2}$$
, [a) continuous for all x

- (a) continuous for all x
- (b) discontinuous at so
- (c) f''(x) exists for all x
- (d) f'(x) exists but f''(x)

65. The function
$$f(x) = \begin{cases} \underline{si} \\ \end{cases}$$

70. Let
$$f(x) = [x]^2 + \sqrt{\{x\}}$$
, we part functions, then

(a) f(x) is continuous at

(b) f(x) is non differentiation

(c) f(x) is discontinuous

(d) f(x) is continuous ar

71. Find the value of a if the

(a) 3

72. If the function f(x) define

$$f(x) = \begin{cases} \frac{\log(1+ax) - 1}{x} \\ \frac{x}{k} \end{cases}$$

(a) a

$$(c)$$
 0

80. If
$$y = x^x$$
 find $\frac{d^2y}{dx^2}$.

(a)
$$x^{x} \left\{ (1 + \log x)^{2} - \frac{1}{x} \right\}$$

$$(c)$$
 0

81. Find
$$\frac{d^2y}{dx^2}$$
, if $x = at^2$, y

(a)
$$\frac{-1}{2at^3}$$

82. Determine the value of

(a)
$$\frac{3}{2}$$

Answers

1. (c)

2. (a)

7. (a)

8. (b)

(ii) Will the slope vary

- (a) Yes
- (c) may or may no

(iii) What is
$$\frac{dy}{dx}$$
 at $x = 3$

- (a) 2
- (c) Function is not

(iv) When the x value l

- (a) 2x 5
- (v) If the potter is trying Why?
 - (a) Yes, because it i
 - (b) Yes, because it i
 - (c) No, because it:
 - (d) No, because it.

Sol. (i) We have, f(x) = |x|

- \therefore Option (c) is co
- (v) We have the funct

It is not a continuo

 \therefore Option (d) is co

ASSERTION-REASON

HINTS/S

1. We have,

$$f(x) = -|x-1| = \begin{cases} -1 & \text{if } x = 1 \\ -1 & \text{if } x = 1 \end{cases}$$

At x = 1

$$LHL = \lim_{h \to 0} f(1-h) = \lim_{h$$

RHL=
$$\lim_{h\to 0} f(1+h) = \lim_{h\to 0} f(1+h)$$

$$f(1) = 1 - 1 = 0$$

$$\therefore$$
 LHL = RHL = $f(0)$ =

Now, at x = 1

$$LHD = \frac{d}{dx}(x - \frac{d}{dx})$$

- \therefore f(x) is not differential
- · Oution (a) is some

- $f(x) = |\sin x|$ is not of
- \therefore Option (b) is correct.
- 10. $\therefore f(x) = x^2 \sin\left(\frac{1}{x}\right)$, where

Hence, value of the fund

.. Option (a) is correct.

12.
$$f(x) = \frac{4-x^2}{4x-x^3}$$

f(x) is discontinuous wh

i.e., $x(4-x^2) = 0$ i.e., x(2

Hence f(x) is discontinu

 \therefore Option (c) is correct.

13.
$$f(x) = |x - 3| \cos x = g(x)$$
$$h(x) = \cos x \text{ is differentiation}$$

But g(x) = |x - 3| is diff

$$\Rightarrow \frac{dy}{dx} = \sec^2 x \text{ and } \frac{dt}{dx}$$

Now, derivative of tan:

 \therefore Option (d) is correct.

$$\Rightarrow$$
 Function $\frac{g(x)}{f(x)}$ is c

 \therefore Option (d) is correct.

24.
$$\therefore \lim_{x \to 0} f(x) \text{ exists} \Rightarrow \lim_{x \to 0} f(x) = \lim_{x$$

$$\Rightarrow \lim_{h \to 0} f(0 - h) = \lim_{h \to 0}$$

$$\Rightarrow \lim_{h \to 0} f(-h) = \lim_{h \to 0} f$$

$$\Rightarrow \lim\{|-h|+a\} = \lim$$

29. Given expression is

$$x = e^{y + e^{y + \dots - to \infty}}$$

Taking log on both side

$$\log x = \log e^{y+x}$$

Differentiating, w.r.t. x,

$$\frac{1}{x} = \frac{dy}{dx} + 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{1-x}{x}$$

 \therefore Option (c) is correct.

32.
$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$

None of the options
$$(a)$$
,

... Option (d) is correct

42.
$$f(x) = x^t$$

$$f(1) + \frac{f^{1}(1)}{1} + \frac{f^{2}(1)}{2} + \cdots$$

$$=1+\frac{n}{1}+\frac{n(n-1)}{2}+\frac{n(n-1)}{2}$$

$$= (1+1)^n = 2^n$$
 [By using

Hence option (c) is corre

3.
$$F(x) = \begin{vmatrix} f(x) & g(x) & h \\ f'(x) & g'(x) & h \\ f''(x) & g''(x) & h \end{vmatrix}$$

where f(x), g(x), h(x) are

$$f'''(x) = 0 = g'''(x) = h$$

$$= \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

$$\Rightarrow f'(x) = \begin{vmatrix} 3x^2 & \cos x \\ 6 & -1 \\ p & p^2 \end{vmatrix}$$

$$\Rightarrow f''(x) = \begin{vmatrix} 6x - \sin x \\ 6 - 1 \\ p p^2 \end{vmatrix}$$

$$= \begin{vmatrix} 6x & -\sin x & -\cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

Similarly,
$$f'''(x) = \begin{vmatrix} 6 & -6 \\ p & -6 \end{vmatrix}$$

56. We have,
$$f\left(\frac{x+y}{1-xy}\right) = f(\frac{x+y}{1-xy})$$

Since it is of the form ta

Let
$$f(x) = A \tan^{-1} x$$

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{A \tan x}{x}$$

$$\Rightarrow A \lim_{x \to 0} \frac{\tan^{-1} x}{x} = \frac{1}{3}$$

$$\therefore f(x) = \frac{1}{3} \tan^{-1} x$$

$$\Rightarrow f(1) = \frac{1}{3} \tan^{-1}(1) = \frac{1}{3}$$

 \therefore Option (b) is correct.

57. LHL =
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$$

 \therefore Option (c) is correct.

62.
$$f(x) = x^{3/2} - \sqrt{x^3 + x^2}$$

Domain of $f = [0, \infty)$

So, LHD at x = 0 does n

 \therefore Option (c) is correct.

$$63. \quad f(x) = \frac{1}{\log|x|}$$

f(x) is not defined for x

 $\therefore f(x)$ is not continuous

∴ Option (b) is correct.

64. We have
$$f(x) = \frac{\sin 4\pi [\pi]}{7 + [x]}$$

We know that $[\pi^2 x]$ is an

 $\therefore 4\pi[\pi^2x]$ is an integral

Given
$$g(x) = \begin{cases} e^{2x}, & x \\ e^{-2x}, & x \end{cases}$$

 $g'(x) = \begin{cases} 2e^{2x}, & x < 0 \\ -2e^{-2x}, & x \ge 0 \end{cases}$

• LHD at x = 0, o'(0) = 0

$$\frac{dy}{dx} = \frac{(1 + \log x) \times 1 - x(0)}{(1 + \log x)^2}$$

∴ Option (a) is correct.

75. $x^y = y^x \Rightarrow y \log x = x \log x$

$$\frac{y}{x} + \log x \frac{dy}{dx} = \frac{x}{y} \frac{dy}{dx} + 1$$

$$\Rightarrow \left(\log x - \frac{x}{y}\right) \frac{dy}{dx} = \left($$

$$\Rightarrow \frac{dy}{dx} = \frac{x \log y - y}{y \log x - x} \times \frac{y}{x}$$

∴ Option (b) is correct.

76. Let $y = \sqrt{\sin x} + \sqrt{\sin x}$