

Syllabus

Explanation: Given that,

$$f(x) = \cot x$$

It is discontinuous at

$$\sin x = 0$$

$$\Rightarrow$$
 $x = n\pi$,

Thus, the given function is $\{x = n\pi : n \in \mathbb{Z}\}$

$$\{x = n\pi : n \in Z\}$$

Q. 4. If
$$f(x) = \begin{cases} mx + 1 & \text{if } x \le \frac{\pi}{2} \\ \sin x + n, & \text{if } x > \frac{\pi}{2} \end{cases}$$
, is

then

(A)
$$m = 1, n = 0$$
 (B)

$$(C) \quad n = \frac{m\pi}{2} \tag{D}$$

The functions e^x and |x| functions for all real value of Since e^x is differentiable even non-differentiable at x = 0.

Thus, the given functions f(x) everywhere but not different

Q. 9. Let $f(x) = |\sin x|$, then

(A) f is everywhere differential

(B) f is everywhere co differentiable at $x = n\pi$, n

(C) f is everywhere continuou

at
$$x = (2n+1)\frac{\pi}{2}$$
, $n \in \mathbb{Z}$.

(D) none of these

Ans. Option (B) is correct.

Explanation: Given that, $f(x) = |\sin x|$

The functions but and si

Explanation: Given that, $x = t^2$ and $y = t^3$ Then, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt}$:

ASSERTION

Directions: In the following q of Assertion (A) is followe Reason (R). Mark the correct

- (A) Both A and R are true as explanation of A
- (B) Both A and R are true but I explanation of A

Explanation: Since $\sin x$ and functions in R, $|\sin x|$ is con Hence Λ is true.

$$\begin{vmatrix} \sin x \end{vmatrix} = \begin{cases} -\sin x, & \text{if } x < 0 \\ \sin x, & \text{if } x \ge 0 \end{cases}$$
$$f(0) = |\sin 0| = 0$$

LHD =
$$f'(0^-) = \lim_{x \to 0} \frac{-\sin^2 x}{x^2 - \sin^2 x}$$

RHD =
$$f'(0^+) = \lim_{x \to 0} \frac{\sin x}{x}$$

At x = 0, LHD \neq RHD.

So f(x) is not differentiable a Hence R is false.

Q. 6. Assertion (**A**): f(x) = [x] is not **Reason** (**R**): f(x) = [x] is not co

$$\mathbf{Q.\,3.}\,\,\frac{d}{dx}(\sin^3 x) = \,\,-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-$$

(A)
$$\cos^3 x$$

(C)
$$3\sin^2 x \cos x$$

Ans. Option (C) is correct.

Explanation:

$$\frac{d}{dx}(\sin^3 x) = 3\sin^2 x \frac{d}{dx}$$

$$= 3\sin^2 x \cos^2 x$$

Q. 4.
$$\frac{d}{dx} \sin x^3$$
_____.
(A) $\cos (x^3)$

$$dx = \frac{1}{(A)\cos(x^3)}$$

(C)
$$3x^2 \sin(x^3)$$

Ans. Option (D) is correct.

Explanation:
$$\frac{d}{dx}(\sin x^3) = \cos x^3 \frac{d}{dx}(x^3)$$