

BASIC CONCEPTS

1. Tangents and Normals:

Equation of tangent to the

$$(y - y_1) = \left(\frac{dy}{dx}\right)_0$$

If the sign of from +ve to –v through *c* (from

x = c is relative f(c) is relative n

(ii) Second order derivat:

Step I: Find f'(x) = 0.

Step II: The equation

Step III: f''(x) is obtain

7. The tangent to the curv

- 8. The line y = x + 1 is a tag. (a) (1, 2)
- 9. The point on the curve

(a)
$$(2\sqrt{2}, 4)$$

10. The slope of tangent to

(a)
$$\frac{22}{7}$$

11. The greatest of the nun

(a)
$$2^{1/2}$$

12. The minimum value of

13. The values of a for whi

23. The least value of the f

(a)
$$\frac{a}{b}$$

24. The condition that the is

(a)
$$a_1 + a = b_1 + b$$

(c)
$$\frac{1}{a_1} - \frac{1}{a} = \frac{1}{b_1} - \frac{1}{b}$$

25. If m be the slope of a ta

(a)
$$|m| > 1$$

26. If at each point of the operative direction of the (a)
$$a > 0$$

$$(a)$$
 2

38. If
$$f(x) = a \log_e |x| + bx^2$$

(a)
$$a = -\frac{3}{4}$$
, $b = -\frac{1}{8}$

- 39. Let f(x) be a function su
 - (a) cannot have a maxi
 - (b) cannot have a minim
 - (c) must have neither a
 - (d) None of these
- 40. The function $f(x) = \sin x$

(a)
$$0 < x < \frac{\pi}{8}$$

- 41. If $f(x) = \frac{x}{\sin x}$ and g(x)
 - (a) both f(x) and g(x) are
 - (b) both f(x) and g(x) are
 - (c) f(x) is an increasing

47. The equation of norma

(a)
$$3x - y = 8$$

48. The equation of tanger

(a)
$$x + 5y = 2$$

49. The interval on which

$$(a) [-1, \infty)$$

50. The function $f(x) = 4 \sin x$

(a) Increasing in
$$\left(\pi, \frac{3\pi}{2}\right)$$

(c) decreasing in
$$\left(\frac{-\pi}{2}\right)$$

51. The function $f(x) = \tan x$

(d) sometimes increase

63. The angle between the

(a) 90°

64. Find the maximum and

(a) Maximum value = 2 Minimum value = 0

(c) Maximum value = 0

Minimum value = 0

65. If the curve $ay + x^2 = 7$ (a) 1

66. The total revenue receive the marginal revenue of (a) 5860

67. Find the equations of a

(a) 2x - y = 3

68. The point on the curve

CASE-BASED QUESTI

Choose the correct option in

1. Read the following and

Based on the above inf (i) The rate of growth

(a)
$$4x - \frac{1}{2}x^2$$

(ii) What is the numbe

$$y = 4 \times 4 - 1$$

 \therefore Option (c) is corr

(iv) Height of the plant

$$y = 4 \times 2 - \frac{1}{2}$$

 \therefore Option (b) is corr

(v) Given height of the

$$\therefore \frac{7}{2} = 4x - \frac{1}{2}x$$

$$\Rightarrow \qquad x^2 - 8x + 7 =$$

(v) The maximum valu

(a)
$$\frac{P^2}{8}$$

Sol. (i) Perimeter of rectange Option (c) is correct

(ii)
$$\therefore A = x.y$$
$$= x.\frac{P - 2x}{2}$$
$$= \frac{Px - 2x^2}{2}$$

Option (b) is correct

(iii) :
$$A = \frac{Px - 2x^2}{2}$$

$$\Rightarrow \frac{dA}{dx} = \frac{P - 4x}{1}$$

Based on above inform

(i) If x any y represent between the variab

(a)
$$x + y + \frac{x}{2} = 10$$

(ii) The area of the wir

(iii) For maximum value

$$\frac{dA}{dx} = 0$$

$$\Rightarrow \qquad 5 - x - \frac{1}{2}$$

$$\Rightarrow$$
 $4x + \pi x$

$$\Rightarrow \qquad x = \frac{20}{4+}$$

Option (d) is correct

$$(iv) : y = 5 - \frac{x}{2} - \frac{\pi x}{4}$$
$$= 5 - \left(\frac{2x + \pi x}{4}\right)$$

$$=5-\frac{20}{4+\pi}\cdot\frac{2+}{4}$$

$$=\frac{80+20\pi-40-40}{4(4+\pi)}$$

(ii) If construction of I sides, then making

(a)
$$C = 80 + 80(x +$$

(c)
$$C = 280 + 180 \left(x\right)$$

- (iii) The owner of a con for this to happen
 - (a) 4 m
- (iv) For minimum cost

 (a) 1 m
 - (v) The Pradhan of vil
 - (a) ₹2000
- **Sol.** (i) Volume of tank = le

$$8 = x$$

Hence, to minimize Option (*d*) is correct

Option (c) is correct

$$(v)$$
 :: $C = 280$

= 280

Option (d) is correct

5. These days chinese and locations near the disp
One day a helicopter of placed at (3, 7) wants to

$$D = \sqrt{(x_1, y_1)}$$

$$\Rightarrow \qquad y_1 = x_1^2$$

$$D^2 = (x^2 - x^2)$$

$$D^2 = x_1^2$$

Option (c) is correct

(iii) We have
$$D^2 = x_1^2$$

$$\therefore \frac{d(D^2)}{dx_1}$$

For minimum value

$$\frac{d(D^2)}{dx_1}$$

$$\Rightarrow \qquad 2x_1 + 4x_2$$

$$\Rightarrow 4x_1^2(x_1)$$

ASSERTION-REASON

In the following questions, a Choose the correct answer or

- (a) Both A and R are true a
- (b) Both A and R are true b
- (c) A is true but R is false.
- (d) A is false and R is also
 - 1. Assertion (A): The rat

 12π cm

Reason (R): Rate of

area of

2. Assertion (A): f(x) = ta

Reason (R): Any fur

3. Assertion (A): $f(x) = x^2$

and
$$\log y = x \log x$$

$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{x} + \frac{1}{x$$

$$\Rightarrow \frac{dy}{dx} = (1 + \log x)$$

$$\therefore \frac{dy}{dx} = 0 \implies (1 +$$

$$\Rightarrow \log x = -1 \Rightarrow \log x$$

$$\Rightarrow \qquad x = e^{-1} \Rightarrow \quad x = \frac{1}{e}$$

Hence, f(x) has a station

Option (b) is correct.

From first equation of tl

$$\Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{2xy} = (m_1) \text{ s}$$

$$6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} =$$

$$\Rightarrow$$
 $x = e$ is maxima of

$$\Rightarrow$$
 $e^{1/e}$ is greatest val

Also,
$$f(4) = 4^{1/4} = 2^{2 \times 1}$$

And
$$1 < 2 < e < 3 < 4 < 5$$

Hence, $3^{1/3}$ is the greate
Option (b) is correct.

13. Given,
$$y = x^2 + ax + 25$$

The curve (i) touches th

$$\Rightarrow \frac{dy}{dx} = 0 \Rightarrow 2x$$

$$\Rightarrow x = -\frac{a}{2}$$

$$\Rightarrow x = -\frac{u}{2}$$

21.
$$f(x) = \sin x - ax + b$$

 $\Rightarrow f'(x) = \cos x - a$

For increasing function

$$f'(x) \ge 0$$

 $\cos x - a \ge 0 \Rightarrow \cos x \ge a$

i.e. $a \le \cos x$ $a \le \mathbf{r}$

$$\therefore a \in (-\infty, -1)$$
.

So option (c) is correct.

22.
$$f(x) = \frac{2x^2 - 1}{x^4}$$

$$f'(x) = \frac{x^4 (4x) - (2x^2 - 1)}{(x^4)^2}$$
$$= \frac{-4x^5 + 4x^3}{x^8} = \frac{-1}{x^8}$$

$$=\frac{-4x^3+4x^3}{x^8}=\frac{-}{}$$

fis decreasing if $f'(x) \le$

Slope of tangent
$$m = \frac{dy}{dz}$$

Since the line y = 2 cuts

$$\Rightarrow$$
 2 = $x^2 - x \Rightarrow x^2 - x$

$$\Rightarrow x^2 + x - 2x - 2 = 0 =$$

$$\Rightarrow$$
 $(x+1)(x-2)=0$

$$\Rightarrow x = -1 \text{ or } 2$$

Point of intersection of

$$y = x^2 - x$$
 are $(-1, 2)$,

As point (2, 2) lies in fire

Option (b) is correct.

29.
$$y = \cos^{-1}(\cos x)$$

$$\Rightarrow \cos y = \cos x$$

$$\Rightarrow -\sin y \frac{dy}{dx} = -\sin x$$

$$\Rightarrow 2x^{2}(x-1) + 2x(x-1)$$

$$\Rightarrow (x-1)(2x^{2} + 2x + 1)$$

$$\Rightarrow x = 1 \text{ as } 2x^{2} + 2x + 1$$

$$\therefore f''(x) = 12x^{2} - 2$$

.:.
$$f''(1) = 12 - 2 = 10 > 6$$

Global minimum value

Option (c) is correct.

36.
$$f(x) = \cos x + \cos(\sqrt{2}x)$$

$$\therefore f(x) = 2\cos\frac{\sqrt{2}+1}{2}x$$

and it is 2 when
$$\cos \frac{\sqrt{2}}{2}$$
 only when $x = 0$.

Option (b) is correct.

39. Let f(x) = |x| is not diffe

- $\therefore g(x)$ is decreasing in Option (c) is correct.
- 42. $h(x) = f(x) \{f(x)\}^2 + \{f$
 - $=3\left\{\frac{1}{3}-\frac{2}{3}f(x)+(f(x))\right\}$
 - $= \left(3\left[(f(x))^2 \frac{2}{3}f(x)\right]\right)$
 - $= \left[3\left\{f(x) \frac{1}{3}\right\}^2 + \frac{2}{3}\right]^2$
 - If f(x) is increasing, f'(x)
 - *i.e.*, h(x) is increasing
 - If f(x) is decreasing, f'
 - Option (a) is correct.

$$= 6\cos x \left\{ \sin^2 x - \sin x \right\}$$

$$= 6\cos x \left\{ \sin^2 x - 2\sin x \right\}$$

$$= 6\cos x \left\{ \left(\sin x - \frac{1}{2}\right)^2 + \right.$$

$$\therefore f(x)$$
 is increasing in Option (b) is correct.

46.
$$x = e^t \cos t, \frac{dx}{dt} = e^t \cos t$$

$$y = e^t \sin t$$
, $\frac{dy}{dt} = e^t \sin t + \frac{dy}{dt}$

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t + \sin t}{\cos t - \sin t}$$

Tangent makes an angle

Option (c) is correct.

53.
$$f(x) = x^3 - 18x^7 + 96x$$

 $f(x) \ge 0 \ \forall \ x \in [0, 9]$

 \Rightarrow Minimuim value of Option (b) is correct.

55. $f(x) = \sin x \cos x = \frac{1}{2} \sin x$

$$\therefore -1 \le \sin 2x \le 1$$
.

$$\therefore -\frac{1}{2} \le \frac{1}{2} \sin 2x \le \frac{1}{2}$$

Hence maximum value Option (b) is correct.

56.
$$y = -x^3 + 3x^2 + 9x - 27$$

 $y'(x) = -3x^2 + 6x + 9 = s1$
 $m'(x) = -6x + 6 = 0 = 3$

62. We are given curve $2y^2$ and point (1, -1) is 2 = a

Differentiating (A), w.r.

$$4y\frac{dy}{dx} = 2ax \Longrightarrow \frac{dy}{dx} = \frac{ax}{2y}$$

$$\left. \therefore \frac{dy}{dx} \right|_{(1,-1)} = -\frac{a}{2} \quad \text{Giv}$$

$$\Rightarrow a = 2$$

$$(i) \implies b = 2 - 2 = 0$$

$$\therefore a=2, b=0$$

Option (a) is correct.

64. $f(x) = x + \sin 2x$ $f(0) = 0 \text{ and } f(2\pi) = 2\pi$

Hence f(x) has maximum

Option (a) is correct