

Syllabus

Explanation: Given

curve is
$$y = 5x - 2x$$
or
$$\frac{dy}{dx} = 5 - 6x^{2}$$
or
$$m = 5 - 6x^{2}$$

$$\frac{dm}{dt} = -12x \frac{dx}{dt}$$

or
$$m = 5 - 6x^2$$

$$\frac{dm}{dt} = -12x\frac{d}{dt}$$
$$= -24x$$

$$\left. \frac{dm}{dt} \right|_{x=3} = -72$$

Q. 3. The contentment obtained af new dish at a trial function is $f(x) = x^3 + 6x^2 + 5x + 3$. The r when 3 units of dish are consu

> (A) 60 **(B)**

(C) 24

Ans. Option (B) is correct.

$$\Rightarrow x = \pm 2$$
For $x = 2$

$$3(2)^2 - y^2 = 8$$

$$\Rightarrow y^2 = 4$$

$$\Rightarrow y = \pm 2$$
and for $x = -2$,
$$3(-2)^2 - y^2 = 8$$

$$\Rightarrow y^2 = 4$$

$$\Rightarrow y = \pm 2$$

So, the points at which nor given line are $(\pm 2, \pm 2)$.

Hence, the equation of norn

$$\Rightarrow y - (\pm 2) = -\frac{1}{3}$$

$$\Rightarrow 3[y - (\pm 2)] = -[3]$$

$$\therefore x + 3y \pm 8 = 0$$

Q. 10. The tangent to the curve y =meets x-axis at :

$$(A) (0, 1)$$
 (B)

(C)
$$(2, 0)$$
 (D)

Ans. Option (B) is correct.

Explanation: The equation by $y = e^{2x}$ Since, it passes through the

$$\therefore \frac{dy}{dx} = e^{2x}.2$$

$$= 2.e^{2x}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(0,1)} = 2.e^{2.0}$$

$$= 2$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(0,1)} = 2.e^{2.0}$$

= Slope of t

Equation of tangent is

$$u = 1 - 2(x = 0)$$

$$(\mathbf{A})\,\sin\,2x\qquad \qquad (\mathbf{B})$$

(C)
$$\cos x$$
 (D)

Ans. Option (C) is correct.

Explanation: In the given in

$$f(x) = \cos x$$

On differentiating with resp

 $f'(x) = -\sin x$ which gives f'(x) < 0 in $\left(0\right)$

Hence, $f(x) = \cos x$ is decre

Q. 15. The function $f(x) = \tan x - x$

- (A) always increases
- (B) always decreases
- (C) never increases

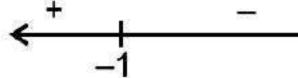
(D) sometimes increases and

Ane Ontion (A) is correct

Explanation : We have,

Now,
$$f'(x) = 0$$

$$\Rightarrow 6(x^2 - x - 2) = 0$$


$$\Rightarrow 6(x + 1)(x - 2) = 0$$

$$\Rightarrow$$
 6(x²-x-2)=0

$$\Rightarrow$$
 6(x+1)(x-2) = 0

$$\Rightarrow$$
 $x = -1$ and $x = -1$

On number line for f(x), we

Hence, x = -1 is point of local is point of local minima.

So, f(x) has one maxima and

Q. 20. The maximum value of $\sin x$.

$$(A) \frac{1}{4} \tag{B}$$

ASSERTION

Directions: In the following of Assertion (A) is followed Reason (R). Mark the correct

- (A) Both A and R are true as explanation of A
- (B) Both A and R are true but I explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- Q. 1. The total revenue received from of a product is given by R(x rupees.

Assertion (A): The marginal reference of t

Reason (R): Marginal revenue

Q. 5. Assertion (A): At $x = \frac{\pi}{6}$, the has a vertical tangent.

Reason (R): The slope of tang

$$y = 2\cos^2(3x)$$
 at $x = \frac{\pi}{6}$ is zero

Ans. Option (D) is correct.

Explanation:

Given
$$y = 2\cos^2(3x)$$

$$\frac{dy}{dx} = 2 \times 2 \times \cos(3x)$$

$$\frac{dy}{dx} = -6\sin 6x$$

$$\frac{dy}{dx}\Big|_{x=\frac{\pi}{6}} = -6\sin \pi$$

$$= -6 \times 0$$

$$= 0$$

$$4 = \frac{6a}{\pm\sqrt{9}}$$

$$4 = \frac{6a}{\pm3}$$

$$4 = \frac{6a}{\pm3}$$

$$4 = \frac{6a}{3} \text{ or } 4 = \frac{6a}{5}$$

$$4 = \frac{6a}{3} \text{ or } 4 = \frac{6a}{5}$$

$$4 = \frac{6a}{3} \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

$$4 = 2 \text{ or } 4 = \frac{6a}{5}$$

Q. 9. Assertion (A): The function f(is strictly increasing on the se

Hence A is true and R is fals

Hence R is true.

$$y = \log(1+x) - \frac{2x}{2+x}$$

Diff. w.r.t. 'x',

$$\frac{dy}{dx} = \frac{1}{1+1}$$

$$=\frac{1}{1+}$$

$$=\frac{1}{1+1}$$

$$=\frac{(2)}{(2)^n}$$

$$= \frac{1}{4}x^{2}(4r^{2})$$

$$= \frac{1}{4}(4r^{2}x^{2})$$

$$\therefore \qquad \frac{dS}{dx} = \frac{1}{4}[8r^{2}x - \frac{dS}{dx}]$$
or
$$\frac{dS}{dx} = 0$$
or
$$x^{2} = 2r^{2} \text{ or } x$$
and
$$y^{2} = 4r^{2} - 2r^{2}$$
or
$$y = \sqrt{2}r$$
i.e.,
$$x = y \text{ and } \frac{d^{2}}{dx}$$

 $= 2r^2 - 6r^2$ or Area is maximum, when Hence A is true.

Angle in a semicircle is a right

$$\frac{d^2V}{dh^2} = \frac{\pi}{3}(-6h + 4r)$$

$$= \frac{\pi}{3}\left(-6\left(\frac{4r}{3}\right)\right)$$

$$= -\frac{4\pi r}{3} < 0$$

$$\text{at } h = \frac{4r}{3}, \text{ Volum}$$

Attempt any four sub-parts Each sub-part carries 1 mark

I. Read the following text and

Q. 5. If the height of the plant is 7 days it has been exposed to the

$$(A) 2 (B)$$

Ans. Option (D) is correct.

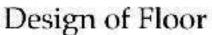
Explanation:

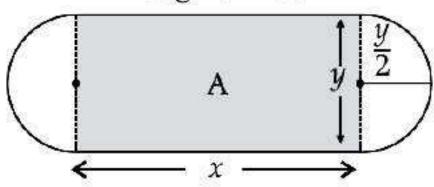
Given,
$$y = \frac{7}{2}$$

i.e., $4x - \frac{1}{2}x^2 = \frac{7}{2}$
 $8x - x^2 - 7$
 $x^2 - 8x + 7 = 0$
 $x^2 - 7x - x + 7 = 0$

We will take x = 1, because for the plant to grow to the

x(x-7)-(x-7)=0


x = 1


III. Read the following text and questions on the basis of the The shape of a toy is given To make the toy beautiful perpendicular to each other v (2, 3), above the toy.

Q. 1. Which value from the following critical point?
(A) ± 1/4

with semicircular ends having as shown below:

Q. 1. If x and y represents the leng rectangular region, then the variables is:

(A)
$$x + \pi y = 100$$
 (B)

(C)
$$\pi x + y = 50$$
 (D)

Ans. Option (B) is correct.

Explanation:

Explanation:

Volume of open box = len

$$= (24)$$

$$= (42)$$

Q. 2. Find the value of $\frac{dV}{dx}$?

(A)
$$12(x^2 + 16x - 48)$$
 (B)

(C)
$$6(x^2 + 8x - 24)$$
 (D)

Ans. Option (B) is correct.

Explanation:

$$\frac{dV}{dx} = \frac{d}{dx} [4x^3 - 96x^2]$$
$$= 12x^2 - 2 \times 96x$$
$$= 12[x^2 - 16x + 16x]$$

$$= \frac{2\pi r}{r_1} (r_1 - r) h_1$$

$$= 2\pi r h_1 \times \frac{h}{h_1}$$

$$= \frac{2\pi r_1}{h_1} (h_1 - h) h_1$$

$$\therefore S = \frac{2\pi r_1}{h_1} (h_1 - h) h_2$$

Q. 3. What is the value of $\frac{dS}{dh}$?

(A)
$$\frac{2\pi r_1}{h}(h_1 - 2h)$$
 (B)

(C)
$$\frac{2\pi r}{h}(h_1 - 2h)$$
 (D)

Ans. Option (D) is correct.