Application of Derivatives

Question 1.

Find all the points of local maxima and local minima of the function $f(x) = (x - 1)^3 (x + 1)^2$

- (a) 1, -1, -1/5
- (b) 1, -1
- (c) 1, -1/5
- (d) -1, -1/5

Answer:

(a) 1, -1, -1/5

Question 2.

Find the local minimum value of the function $f(x) = \sin^4 x + \cos^4 x$, $0 < x < \frac{\pi}{2}$

- (a) $\frac{1}{\sqrt{2}}$
- (b) $\frac{1}{2}$
- (c) $\frac{\sqrt[2]{3}}{2}$
- (d) 0

Answer:

(b) $\frac{1}{2}$

Question 3.

Find the points of local maxima and local minima respectively for the function $f(x) = \sin 2x - x$, where

- where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (a) $\frac{-\pi}{6}$, $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$, $\frac{-\pi}{3}$ (c) $\frac{-\pi}{3}$, $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$, $\frac{-\pi}{6}$

Answer: (d) $\frac{\pi}{6}$, $\frac{-\pi}{6}$

Question 4.

If $y = \frac{ax-b}{(x-1)(x-4)}$ has a turning point P(2, -1), then find the value of a and b respectively.

- (a) 1, 2
- (b) 2, 1
- (c) 0, 1
- (d) 1, 0

Answer:

(d) 1, 0

Question 5.

 $\sin^p \theta \cos^q \theta$ attains a maximum, when $\theta =$

- (a) $\tan^{-1} \sqrt{\frac{p}{q}}$
- (b) $\tan^{-1}\left(\frac{p}{q}\right)$
- (c) $\tan^{-1}q$
- (d) $\tan^{-1}\left(\frac{q}{p}\right)$

Answer:

(a)
$$\tan^{-1}\sqrt{\frac{p}{q}}$$

Question 6.

Find the maximum profit that a company can make, if the profit function is given by $P(x) = 41 + 24x - 18x^2$.

- (a) 25
- (b) 43
- (c) 62
- (d) 49

Answer:

(d) 49

Question 7.

If $y = x^3 + x^2 + x + 1$, then y

- (a) has a local minimum
- (b) has a local maximum
- (c) neither has a local minimum nor local maximum
- (d) None of these

Answer:

(c) neither has a local minimum nor local maximum

Question 8.

Find both the maximum and minimum values respectively of $3x^4 - 8x^3 + 12x^2 - 48x + 1$ on the

interval [1, 4].

- (a) -63, 257
- (b) 257, -40
- (c) 257, -63
- (d) 63, -257

Answer:

(c) 257, -63

Question 9.

It is given that at x = 1, the function $x^4 - 62x^2 + ax + 9$ attains its maximum value on the interval [0, 2]. Find the value of a.

- (a) 100
- (b) 120
- (c) 140
- (d) 160

Answer:

(b) 120

Question 10.

The function $f(x) = x^5 - 5x^4 + 5x^3 - 1$ has

- (a) one minima and two maxima
- (b) two minima and one maxima
- (c) two minima and two maxima
- (d) one minima and one maxima

Answer:

(d) one minima and one maxima

Question 11.

Find the height of the cylinder of maximum volume that can be is cribed in a sphere of radius a.

- (a) $\frac{2a}{3}$ (b) $\frac{2a}{\sqrt{3}}$ (c) $\frac{a}{3}$ (d) $\frac{a}{3}$

Answer:

(b) $\frac{2a}{\sqrt{3}}$

Question 12.

Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.

- (a) $\frac{\pi r^3}{3\sqrt{3}}$
- (b) $\frac{4\pi r^2 h}{3\sqrt{3}}$

(c)
$$4\pi r^3$$

(c)
$$4\pi r^3$$

(d) $\frac{4\pi r^3}{3\sqrt{3}}$

(d)
$$\frac{4\pi r^3}{3\sqrt{3}}$$

Question 13.

The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is

- (a) scalene
- (b) equilateral
- (c) isosceles
- (d) None of these

Answer:

(c) isosceles

Question 14.

Find the area of the largest isosceles triangle having perimeter 18 metres.

- (a) $9\sqrt{3}$
- (b) $8\sqrt{3}$
- (c) $4\sqrt{3}$
- (d) $7\sqrt{3}$

Answer:

(a) $9\sqrt{3}$

Question 15.

 $2x^3 - 6x + 5$ is an increasing function, if

(a)
$$0 < x < 1$$

(b)
$$-1 < x < 1$$

(c)
$$x < -1$$
 or $x > 1$

(d)
$$-1 < x < -\frac{1}{2}$$

Answer:

(c)
$$x < -1$$
 or $x > 1$

Question 16.

If $f(x) = \sin x - \cos x$, then interval in which function is decreasing in $0 \le x \le 2\pi$, is

(a)
$$\left[\frac{5\pi}{6}, \frac{3\pi}{4}\right]$$

(b)
$$\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

(c)
$$\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$$

(d) None of these

Question 17.

The function which is neither decreasing nor increasing in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ is

- (a) cosec x
- (b) tan x
- (c) x^2
- (d) |x 1|

Answer:

(a) cosec x

Question 18.

The function $f(x) = \tan^{-1} (\sin x + \cos x)$ is an increasing function in

- (a) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
- (b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- (c) $\left(0, \frac{\pi}{2}\right)$
- (d) None of these

Answer:

(d) None of these

Question 19.

The function $f(x) = x^3 + 6x^2 + (9 + 2k)x + 1$ is strictly increasing for all x, if

- (a) $k > \frac{3}{2}$ (b) $k < \frac{3}{2}$ (c) $k \ge \frac{3}{2}$ (d) $k \le \frac{3}{2}$

Answer:

(a) $k > \frac{3}{2}$

Question 20.

The point on the curves $y = (x - 3)^2$ where the tangent is parallel to the chord joining (3, 0) and (4, 0)1) is

- (a) $\left(-\frac{7}{2},\frac{1}{4}\right)$
- (b) $\left(\frac{5}{2}, \frac{1}{4}\right)$
- (c) $\left(-\frac{5}{2},\frac{1}{4}\right)$

(d)
$$\left(\frac{7}{2}, \frac{1}{4}\right)$$

(d)
$$\left(\frac{7}{2}, \frac{1}{4}\right)$$

Question 21.

The slope of the tangent to the curve $x = a \sin t$, $y = a \{\cot t + \log(\tan \frac{t}{2})\}$ at the point 't' is

- (a) tan t
- (b) cot t
- (c) $\tan \frac{t}{2}$
- (d) None of these

Answer:

(a) tan t

Question 22.

The equation of the normal to the curves $y = \sin x$ at (0, 0) is

- (a) x = 0
- (b) x + y = 0
- (c) y = 0
- (d) x y = 0

Answer:

(b)
$$x + y = 0$$

Question 23.

The tangent to the parabola $x^2 = 2y$ at the point $(1, \frac{1}{2})$ makes with the x-axis an angle of

- (a) 0°
- (b) 45°
- (c) 30°
- (d) 60°

Answer:

(b) 45°

Question 24.

The two curves $x^3 - 3xy^2 + 5 = 0$ and $3x^2y - y^3 - 7 = 0$

- (a) cut at right angles
- (b) touch each other
- (c) cut at an angle $\frac{\pi}{4}$
- (d) cut at an angle $\frac{\hat{\pi}}{3}$

Answer:

(a) cut at right angles

Question 25.

The distance between the point (1, 1) and the tangent to the curve $y = e^{2x} + x^2$ drawn at the point x = 0

- $\begin{array}{c}
 x 0 \\
 (a) \frac{1}{\sqrt{5}} \\
 (b) \frac{-1}{\sqrt{5}} \\
 (c) \frac{2}{\sqrt{5}} \\
 (d) \frac{-2}{\sqrt{5}}
 \end{array}$

Answer:

(c) $\frac{2}{\sqrt{5}}$

Question 26.

The tangent to the curve $y = 2x^2 - x + 1$ is parallel to the line y = 3x + 9 at the point

- (a)(2,3)
- (b)(2,-1)
- (c)(2,1)
- (d)(1,2)

Answer:

(d)(1,2)

Question 27.

The tangent to the curve $y = x^2 + 3x$ will pass through the point (0, -9) if it is drawn at the point

- (a) (0, 1)
- (b)(-3,0)
- (c)(-4,4)

(d)(1,4)

Answer:

(b)(-3,0)

Question 28.

Find a point on the curve $y = (x - 2)^2$. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

- (a)(3,1)
- (b) (4, 1)
- (c)(6,1)
- (d)(5,1)

Answer:

(a)(3,1)

Question 29.

Tangents to the curve $x^2 + y^2 = 2$ at the points (1, 1) and (-1, 1) are

- (a) parallel
- (b) perpendicular
- (c) intersecting but not at right angles
- (d) none of these

(b) perpendicular

Question 30.

If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is

- (a) 1%
- (b) 2%
- (c) 3%
- (d) 4%

Answer:

(a) 1%

Question 31.

If there is an error of a% in measuring the edge of a cube, then percentage error in its surface area is

- (a) 2a%
- (b) $\frac{a}{2}$ %
- (c) 3a%
- (d) None of these

Answer:

(b) $\frac{a}{2}$ %

Question 32.

If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.

- (a) $2.46\pi \text{ cm}^3$
- (b) $8.62\pi \text{ cm}^3$
- (c) $9.72\pi \text{ cm}^3$
- (d) $7.46\pi \text{ cm}^3$

Answer:

(c) $9.72\pi \text{ cm}^3$

Question 33.

Find the approximate value of f(3.02), where $f(x) = 3x^2 + 5x + 3$

- (a) 45.46
- (b) 45.76
- (c) 44.76

(d) 44.46

Answer:

(a) 45.46

Ouestion 34.

$$f(x) = 3x^2 + 6x + 8, x \in R$$

- (a) 2
- (b) 5
- (c) 8
- (d) does not exist

Answer:

(d) does not exist

Question 35.

The radius of a cylinder is increasing at the rate of 3 m/s and its height is decreasing at the rate of 4 m/s. The rate of change of volume when the radius is 4 m and height is 6 m, is

- (a) 80π cu m/s
- (b) 144π cu m/s
- (c) 80 cu m/s
- (d) 64 cu m/s

Answer:

(a) 80π cu m/s

Ouestion 36.

The sides of an equilateral triangle are increasing at the rate of 2 cm/s. The rate at which the area increases, when the side is 10 cm, is

- (a) $\sqrt{3} \text{ cm}^2/\text{s}$
- (b) $10 \text{ cm}^2/\text{s}$
- (c) $10\sqrt{3} \text{ cm}^2/\text{s}$
- (d) $\frac{10}{\sqrt{3}}$ cm²/s

Answer:

(c) $10\sqrt{3} \text{ cm}^2/\text{s}$

Question 37.

A particle is moving along the curve $x = at^2 + bt + c$. If $ac = b^2$, then particle would be moving with uniform

- (a) rotation
- (b) velocity
- (c) acceleration
- (d) retardation

(c) acceleration

Question 38.

The distance 's' metres covered by a body in t seconds, is given by $s = 3t^2 - 8t + 5$. The body will stop after

- (a) 1 s
- (b) $\frac{3}{4}$ s
- (c) $\frac{1}{3}$ s
- (d) 4 s

Answer:

(c) $\frac{4}{3}$ s

Question 39.

The position of a point in time 't' is given by $x = a + bt - ct^2$, $y = at + bt^2$. Its acceleration at time 't' is

- (a) b-c
- (b) b + c
- (c) 2b 2c
- (d) $2\sqrt{b^2+c^2}$

Answer:

$$(\mathrm{d})\ 2\sqrt{b^2+c^2}$$

Question 40.

The function $f(x) = \log (1 + x) - \frac{2x}{2+x}$ is increasing on

- (a) $(-1, \infty)$
- (b) $(-\infty, 0)$
- (c) $(-\infty, \infty)$
- (d) None of these

Answer:

(a) $(-1, \infty)$

Question 41.

$$f(x)=\left(rac{e^{2x}-1}{e^{2x}+1}
ight)$$
 is

- (a) an increasing function
- (b) a decreasing function
- (c) an even function
- (d) None of these

Answer:

(a) an increasing function

Question 42.

The function $f(x) = \cot^{-1} x + x$ increases in the interval

- (a) $(1, \infty)$
- (b) $(-1, \infty)$
- (c) $(0, \infty)$
- (d) $(-\infty, \infty)$

Answer:

(d) $(-\infty, \infty)$

Question 43.

The function $f(x) = \frac{x}{\log x}$ increases on the interval

- (a) $(0, \infty)$
- (b) (0, e)
- (c) (e, ∞)
- (d) none of these

Answer:

(c) (e, ∞)

Question 44.

The length of the longest interval, in which the function $3 \sin x - 4\sin^3 x$ is increasing, is

- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$
- (d) π

Answer:

(a) $\frac{\pi}{3}$

Question 45.

The coordinates of the point on the parabola $y^2 = 8x$ which is at minimum distance from the circle $x^2 + (y+6)^2 = 1$ are

- (a) (2, -4)
- (b) (18, -12)
- (c)(2,4)
- (d) none of these

Answer:

(a) (2, -4)

Question 46.

The distance of that point on $y = x^4 + 3x^2 + 2x$ which is nearest to the line y = 2x - 1 is (a) $\frac{3}{\sqrt{5}}$

Answer: (d) $\frac{1}{\sqrt{5}}$

Question 47.

The function $f(x) = x + \frac{4}{x}$ has

- (a) a local maxima at x = 2 and local minima at x = -2
- (b) local minima at x = 2, and local maxima at x = -2
- (c) absolute maxima at x = 2 and absolute minima at x = -2
- (d) absolute minima at x = 2 and absolute maxima at x = -2

Answer:

(b) local minima at x = 2, and local maxima at x = -2

Question 48.

The combined resistance R of two resistors R_1 and R_2 (R_1 , $R_2 > 0$) is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If $R_1 + R_2 = C$ (a constant), then maximum resistance R is obtained if

- (a) $R_1 > R_2$
- (b) $R_1 < R_2$
- (c) $R_1 = R_2$
- (d) None of these

Answer:

(c) $R_1 = R_2$

Question 49.

Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume and of radius r.

- (a) r
- (b) 2r
- (c) $\frac{r}{2}$
- (d) $\frac{3\pi r}{2}$

Answer:

(a) r