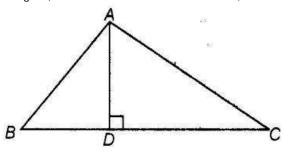
Unit 6 (Triangles)

Exercise 6.1 Multiple Choice Questions (MCQs)

Question 1:

In figure, if ∠BAC =90° and AD⊥BC. Then,

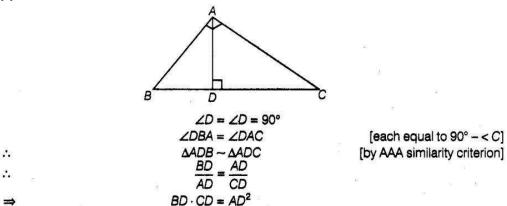


- (a) $BD.CD = BC^2$
- (b) $AB.AC = BC^2$
- (c) BD.CD=AD2

(d) $AB.AC = AD^2$

Solution:

(c) In ΔADB and ΔADC,



Question 2:

If the lengths of the diagonals of rhombus are 16 cm and 12 cm. Then, the length of the sides of the rhombus is

- (a) 9 cm
- (b) 10 cm
- (c) 8 cm
- (d) 20 cm

Solution:

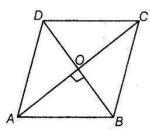
(b) We know that, the diagonals of a rhombus are perpendicular bisector of each other.

Given,

[let]

:.

In right angled ∠AOB,



$$AB^2 = AO^2 + OB^2$$

AB = 10 cm

[by Pythagoras theorem]

$$\Rightarrow$$

$$AB^2 = 8^2 + 6^2 = 64 + 36 = 100$$

Question 3:

If \triangle ABC ~ \triangle EDF and \triangle ABC is not similar to \triangle DEF, then which of the following is not true?

(a) BC
$$\cdot$$
 EF = AC \cdot FD

(b)
$$AB \cdot EF = AC \cdot DE$$

(c) BC
$$\cdot$$
 DE = AB \cdot EF

(d)
$$BC \cdot DE = AB \cdot FD$$

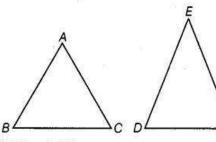
Solution:

d . .

(c) Given,

$$\Delta ABC \sim \Delta EDF$$

$$\frac{AB}{FD} = \frac{BC}{DE} = \frac{AC}{FE}$$



Taking first two terms, we get

$$\frac{AB}{ED} = \frac{BC}{DF}$$

$$\Rightarrow$$

$$AB \cdot DF = ED \cdot BC$$

$$BC \cdot DE = AB \cdot DF$$

So, option (d) is true.

Taking last two terms, we get

$$\frac{BC}{DF} = \frac{AC}{EF}$$

$$\Rightarrow$$

$$BC \cdot EF = AC \cdot DF$$

So, option (a) is also true.

Taking first and last terms, we get

$$\frac{AB}{ED} = \frac{AC}{EF}$$

 \Rightarrow

$$AB \cdot EF = ED \cdot AC$$

Hence, option (b) is true.

Question 4:

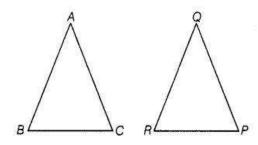
If in two Δ PQR , $\frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}$,then

Solution:

(a) Given, in two
$$\Delta$$
 ABC and Δ PQR $\frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}$

which shows that sides of one triangle are proportional to the side of the other triangle, then their corresponding angles are also equal, so by SSS similarity, triangles are similar.

i.e.,
$$\Delta CAB \sim \Delta PQR$$



Question 5:

In figure, two line segments AC and BD intersect each other at the point P such that PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, \angle APB = 50° and \angle CDP = 30°. Then, \angle PBA is equal to

(a) 50°

(b) 30°

 $(c) 60^{\circ}$

(d) 100°

Solution:

[vertically opposite angles]

$$\frac{AP}{PD} = \frac{6}{5}$$

and

$$\frac{BP}{CP} = \frac{3}{2.5} = \frac{6}{5}$$

...(ii)

From Eqs. (i) and (ii)

$$\frac{AP}{PD} = \frac{BP}{CP}$$

[by SAS similarity criterion]

 $\angle A = \angle D = 30^{\circ}$ [corresponding angles of similar triangles] [sum of angles of a triangle = 180°]

$$\angle A + \angle B + \angle APB = 180^{\circ}$$

30° + $\angle B + 50^{\circ} = 180^{\circ}$

 \Rightarrow

$$\angle B = 180^{\circ} - (50^{\circ} + 30^{\circ}) = 100^{\circ}$$

 $\angle PBA = 100^{\circ}$

Question 6:

If in two \triangle DEF and \triangle PQR, \angle D = \angle Q and \angle R = \angle E,then which of the following is not true?

(a)
$$\frac{EF}{PR} = \frac{DF}{PQ}$$

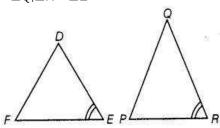
(b)
$$\frac{DE}{PQ} = \frac{EF}{RP}$$

(b)
$$\frac{DE}{PQ} = \frac{EF}{RP}$$
 (c) $\frac{DE}{QR} = \frac{DF}{PQ}$ (d) $\frac{EF}{RP} = \frac{DE}{QR}$

(d)
$$\frac{EF}{RP} = \frac{DE}{QR}$$

Solution:

(b) Given, in $\triangle DEF$, $\angle D = \angle Q$, $\angle R = \angle E$



$$ZF = ZP$$

$$\frac{DF}{QP} = \frac{ED}{RQ} = \frac{FE}{PR}$$

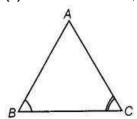
Question 7:

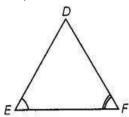
In \triangle ABC and \triangle DEF, \angle B = \angle E, \angle F = \angle C and AB = 30E Then, the two triangles are

- (a) congruent but not similar
- (b) similar but not congruent
- (c) neither congruent nor similar
- (d) congruent as well as similar

Solution:

(b) In $\triangle ABC$ and $\triangle DEF$, $\angle B = \angle E$, $\angle F = \angle C$ and AB = 3DE





We know that, if in two triangles corresponding two angles are same, then they are similar by AAA similarity criterion. Also, \triangle A8C and \triangle DEF do not satisfy any rule of congruency, (SAS, ASA, SSS), so both are not congruent.

Question 8:

If
$$\triangle ABC \sim \triangle PQR$$
 with $\frac{BC}{QR} = \frac{1}{3}$, then $\frac{\text{ar}(\triangle PRQ)}{\text{ar}(\triangle BCA)}$ is equal to

(a) 9 (b) 3 (c) $\frac{1}{3}$ (d) $\frac{1}{6}$

Solution:

(a) Given,
$$\triangle ABC \sim \triangle PQR$$
 and $\frac{BC}{QR} = \frac{1}{3}$

We know that, the ratio of the areas of two similar triangles is equal to square of the ratio of their corresponding sides.

$$\frac{\operatorname{ar}(\Delta PRQ)}{\operatorname{ar}(\Delta BCA)} = \frac{(QR)^2}{(BC)^2} = \left(\frac{QR}{BC}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1} = 9$$

Question 9:

If \triangle ABC \sim \triangle DFE, \angle A = 30°, \angle C = 50°, AB = 5 cm, AC = 8 cm and OF = 7.5 cm. Then, which of the following is true?

(a) DE =12 cm,
$$\angle$$
F =50°

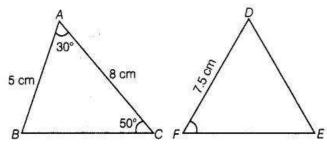
(b) DE = 12 cm,
$$\angle$$
F =100°

(c) EF = 12 cm,
$$\angle D = 100^{\circ}$$

(d) EF = 12 cm,
$$\angle D$$
 = 30°

Solution:

(b) Given, AABC ~ ADFE, then $\angle A = \angle D = 30^{\circ}$, $\angle C = \angle E = 50^{\circ}$



$$\angle B = \angle F = 180^{\circ} - (30^{\circ} + 50^{\circ}) = 100^{\circ}$$

Also,
$$AB = 5 \text{ cm}$$
, $AC = 8 \text{ cm}$ and $DF = 7.5 \text{ cm}$

$$\frac{AB}{DF} = \frac{AC}{DE}$$

$$\frac{5}{7.5} = \frac{8}{DE}$$

$$DE = \frac{8 \times 7.5}{5} = 12 \text{ cm}$$

Hence;
$$DE = 12 \text{ cm}, \angle F = 100^{\circ}$$

Question 10:

•

If in \triangle ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar, when

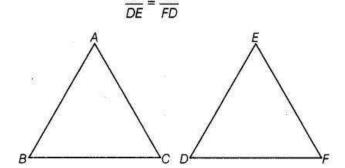
(b)
$$\angle A = \angle D$$

$$(c) \angle B = \angle D$$

(d)
$$\angle A = \angle F$$

Solution:

(c) Given, in $\triangle ABC$ and $\triangle EDF$,



By converse of basic proportionality theorem,

Then,

$$\angle B = \angle D$$
, $\angle A = \angle E$

and

$$\angle C = \angle F$$

Question 11:

If $\triangle ABC \sim \triangle QRP$, $\frac{\operatorname{ar}(\triangle ABC)}{\operatorname{ar}(\triangle PQR)} = \frac{9}{4}$, AB = 18 cm and BC = 15 cm, then PR is

equal to

(a) 10 cm

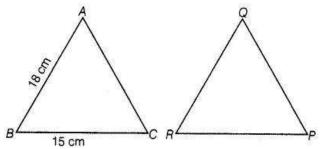
(b) 12 cm

(c) $\frac{20}{3}$ cm

(d) 8 cm

Solution:

(a) Given, \triangle ABC \sim \triangle QRP, AB = 18cm and BC = 15cm



We know that, the ratio of area of two similar triangles is equal to the ratio of square of their corresponding sides.

$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta QRP)} = \frac{(BC)^2}{(RP)^2}$$
But given,
$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \frac{9}{4}$$
 [given]
$$\Rightarrow \qquad \frac{(15)^2}{(RP)^2} = \frac{9}{4}$$
 [: $BC = 15 \, \mathrm{cm}$, given]
$$\Rightarrow \qquad (RP)^2 = \frac{225 \times 4}{9} = 100$$

$$\therefore \qquad RP = 10 \, \mathrm{cm}$$

Question 12:

If S is a point on side PQ of a Δ PQR such that PS = QS = RS, then

(a)
$$PR \cdot QR = RS^2$$

(b)
$$QS^2 + RS^2 = QR^2$$

(c)
$$PR^2 + QR^2 = PQ^2$$

(d)
$$PS^2 + RS^2 = PR^2$$

Solution:

(c) Given, in ΔPQR,

$$PS = QS = RS \qquad ...(i)$$
In \triangle PSR, $PS = RS \qquad [from Eq. (i)]$

$$\Rightarrow \qquad \angle 1 = \angle 2 \qquad ...(ii)$$

Similarly, in A RSQ,

[corresponding angles of equal sides are equal]

[using Eqs. (ii) and (iii)]

Now, in ΔPQR, sum of angles = 180°

$$\Rightarrow \qquad \angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow \qquad \angle 2 + \angle 4 + \angle 1 + \angle 3 = 180^{\circ}$$

$$\Rightarrow \qquad \angle 1 + \angle 3 + \angle 1 + \angle 3 = 180^{\circ}$$

$$\Rightarrow \qquad 2(\angle 1 + \angle 3) = 180^{\circ}$$

$$\Rightarrow \qquad \angle 1 + \angle 3 = \frac{180^{\circ}}{2} = 90^{\circ}$$

$$\therefore \qquad \angle R = 90^{\circ}$$

In \triangle PQR, by Pythagoras theorem,

$$PR^2 + QR^2 = PQ^2$$

Exercise 6.2 Very Short Answer Type Questions

Question 1:

Is the triangle with sides 25 cm, 5 cm and 24 cm a right triangle? Give reason for your answer.

Solution:

False

Let a = 25 cm, b = 5 cm and c = 24 cm

Now,
$$b^2 + c^2 = (5)^2 + (24)^2$$

= 25+ 576 = 601 \neq (25)^2

Hence, given sides do not make a right triangle because it does not satisfy the property of Pythagoras theorem.

Question 2:

It is given that $\triangle DEF \sim \triangle RPQ$. Is it true to say that $\angle D = \angle R$ and $\angle F = \angle P$? Why?

Solution:

False

We know that, if two triangles are similar, then their corresponding angles are equal.

$$\angle D = \angle R, \angle E = \angle P \text{ and } \angle F = Q$$

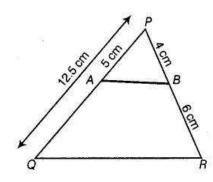
Question 3:

A and B are respectively the points on the sides PQ and PR of a Δ PQR such that PQ = 12.5 cm, PA = 5 cm, BR = 6 cm and PB = 4 cm. Is AB || QR ? Give reason for your answer.

Solution:

False

Given, PQ = 12.5 cm, PA = 5 cm, BR = 6 cm and PB = 4 cm



Then,
$$QA = QP - PA = 12.5 - 5 = 7.5 \text{ cm}$$

Now, $\frac{PA}{AQ} = \frac{5}{7.5} = \frac{50}{75} = \frac{2}{3}$...(i)

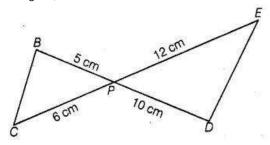
and $\frac{PB}{BR} = \frac{4}{6} = \frac{2}{3}$...(ii)

From Eqs. (i) and (ii), $\frac{PA}{AQ} = \frac{PB}{BR}$

By converse of basic proportionality theorem, AB || QR

Question 4:

In figure, BD and CE intersect each other at the point P. Is $\triangle PBC \sim \triangle PDE$? Why?



Solution:

True

Now,
$$\frac{\angle BPC}{PB} = \frac{\angle EPD}{10} \qquad \text{[vertically opposite angles]}$$
 and
$$\frac{PB}{PD} = \frac{5}{10} = \frac{1}{2} \qquad \qquad \dots \text{(i)}$$

$$\frac{PC}{PE} = \frac{6}{12} = \frac{1}{2} \qquad \qquad \dots \text{(ii)}$$
 From Eqs. (i) and (ii),
$$\frac{PB}{PD} = \frac{PC}{PE}$$

Since, one angle of ΔPBC is equal to one angle of ΔPDE and the sides including these angles are proportional, so both triangles are similar.

Hence, $\triangle PBC \sim \triangle PDE$, by SAS similarity criterion.

Question 5:

In Δ PQR and Δ MST, Δ P = 55°, Δ Q =25°, Δ M = 100° and Δ S = 25°. Is Δ QPR ~ Δ TSM? Why?

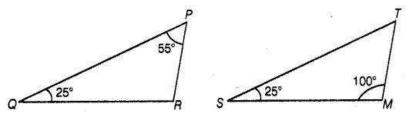
Solution:

False

We know that, the sum of three angles of a triangle is 180°.

In ΔPQR,
$$\angle P + \angle Q + \angle R = 180^{\circ}$$

 $\Rightarrow \qquad 55^{\circ} + 25^{\circ} + \angle R = 180^{\circ}$
 $\Rightarrow \qquad \angle R = 180^{\circ} - (55^{\circ} + 25^{\circ}) = 180^{\circ} - 80^{\circ} = 100^{\circ}$
In ΔTSM, $\angle T + \angle S + \angle M = 180^{\circ}$
 $\Rightarrow \qquad \angle T + \angle 25^{\circ} + 100^{\circ} = 180^{\circ}$
 $\Rightarrow \qquad \angle T = 180^{\circ} - (25^{\circ} + 100^{\circ})$
 $= 180^{\circ} - 125^{\circ} = 55^{\circ}$



In ΔPQR and A TSM, and

$$\angle P = \angle T$$
, $\angle Q = \angle S$,

and

 $\angle R = \angle M$

ΔPQR ~ ΔTSM [since, all corresponding angles are equal]

Hence, Δ QPR is not similar to ΔTSM , since correct correspondence is P $\,\leftrightarrow\,$ T, Q < r $\rightarrow\,$ S and R $\,\leftrightarrow$ M

Question 6:

Is the following statement true? Why? "Two quadrilaterals are similar, if their corresponding angles are equal".

Solution:

False

Two quadrilaterals are similar, if their corresponding angles are equal and corresponding sides must also be proportional.

Question 7:

Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Solution:

True

Here, the corresponding two sides and the perimeters of two triangles are proportional, then third side of both triangles will also in proportion.

Question 8:

If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle. Can you say

that two triangles will be similar? Why?

Solution:

True

Let two right angled triangles be $\triangle ABC$ and $\triangle PQR$.

Question 9:

The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5}$? Why?

Solution:

False

By the property of area of two similar triangles,

$$\left(\frac{\text{Area}_1}{\text{Area}_2}\right) = \left(\frac{\text{Altitude}_1}{\text{Altitude}_2}\right)^2$$

$$\left(\frac{\text{Area}_1}{\text{Area}_2}\right) = \left(\frac{3}{5}\right)^2 \qquad \left[\because \frac{\text{altitude}_1}{\text{altitude}_2} = \frac{3}{5}, \text{ given}\right]$$

$$= \frac{9}{25} \neq \frac{6}{5}$$

So, given statement is not correct,

Question 10:

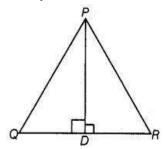
D is a point on side QR of Δ PQR such that PD \perp QR. Will it be correct to say that Δ PQD \sim Δ RPD? Why?

Solution:

False

In $\triangle PQD$ and $\triangle RPD$,

PD = PD [common side] $\angle PDQ = \angle PDR$ [each 90°]



Here, no other sides or angles are equal, so we can say that $\angle PQD$ is not similar to $\triangle RPD$.

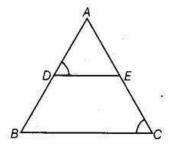
But, if $\angle P = 90^{\circ}$,

then \(\text{DPQ} = \text{LPRD} \)

[each equal to $90^{\circ} - \angle 0$ and by ASA similarity criterion, $\triangle PQD \sim \triangle RPD$]

Question 11:

In figure, if $\angle D = \angle C$, then it is true that $\triangle ADE \sim \triangle ACB$? Why?



Solution:

True

In \triangle ADE and \triangle ACB,

 $\angle A = \angle A$ [common angle] $\angle D = \angle C$ [given] $\triangle ADE \sim \triangle ACB$ [by AAA similarity criterion]

Question 12:

Is it true to say that, if in two triangles, an angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar? Give reason for your answer.

Solution:

False

Because, according to SAS similarity criterion, if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Here, one angle and two sides of two triangles are equal but these sides not including equal angle, so given statement is not correct.

Exercise 6.3 Short Answer Type Questions

Question 1:

In a $\triangle PQR$, $PR^2 - PQ^2 = QR^2$ and M is a point on side PR such that QM \perp PR.

_

Prove that $QM^2 = PM \times MR$.

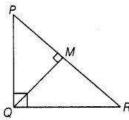
Solution:

Given In A PQR,
$$PR^2 - PQ^2 = QR^2$$
 and $QM \perp PR$

To prove
$$QM^2 = PM \times MR$$

Proof Since,
$$PR^2 - PQ^2 = QR^2$$

$$\Rightarrow PR^2 = PQ^2 + QR^2$$



So, ΔPQR is right angled triangle at Q.

In
$$\triangle QMR$$
 and $\triangle PMQ$, $\angle M = \angle M$ [each 90°] $\angle MQR = \angle QPM$ [each equal to 90° – $\angle R$] $\triangle QMR - \triangle PMQ$ [by AAA similarity criterion]

Now, using property of area of similar triangles, we get

$$\frac{\operatorname{ar}\left(\Delta QMR\right)}{\operatorname{ar}\left(\Delta PMQ\right)} = \frac{(QM)^2}{(PM)^2}$$

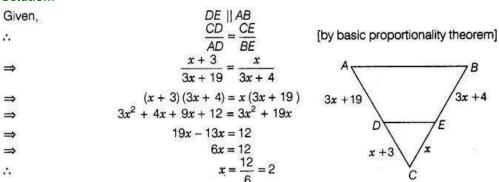
$$\Rightarrow \frac{\frac{1}{2} \times RM \times QM}{\frac{1}{2} \times PM \times QM} = \frac{(QM)^2}{(PM)^2} \quad [\because \text{area of triangle} = \frac{1}{2} \times \text{base} \times \text{height}]$$

 $\Rightarrow QM^2 = PM \times RM \qquad \qquad \text{Hence proved.}$

Question 2:

Find the value of x for which $DE \parallel AB$ in given figure.

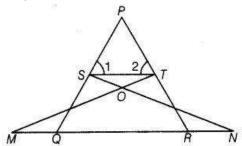
Solution:



Hence, the required value of x is 2.

Question 3:

In figure, if $\angle 1 = \angle 2$ and $\triangle NSQ = \triangle MTR$, then prove that $\triangle PTS \sim \triangle PRQ$.



Solution:

Given $\triangle NSQ \cong \triangle MTR$ and $\angle 1 = \angle 2$

To prove ΔPTS ~ ΔPRQ

10 p.010 = 10		
Proof Since,	$\Delta NSQ \cong \Delta MTR$	
So,	SQ = TR	(i)
Also,	$\angle 1 = \angle 2 \Rightarrow PT =$	≠ PS(ii)
From Eqs. (i) and (ii),	$\frac{PS}{SQ} = \frac{PT}{TR}$	osite to equal angles are also equal]
⇒ ∴	$ST QR $ [by conven $\angle 1 = \angle PQR$	se of basic proportionality theorem]
and	$\angle 2 = \angle PRQ$	
in ΔPTS and ΔPRQ,		[common angles]
	$\angle P = \angle P$	
	$\angle 1 = \angle PQR$	
	$\angle 2 = \angle PRQ$	
	Δ PTS \sim Δ PRQ	[by AAA similarity criterion] Hence proved.

Question 4:

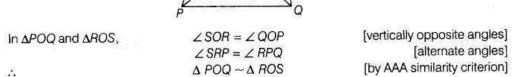
Diagonals of a trapezium PQRS intersect each other at the point 0, PQ \parallel RS and PQ = 3 RS. Find the ratio of the areas of

 \triangle POQ and \triangle ROS.

Solution:

Given PQRS is a trapezium in which PQ \parallel PS and PQ = 3 RS

 $\frac{PQ}{RS} = \frac{3}{1} \qquad \dots (i)$



By property of area of similar triangle,

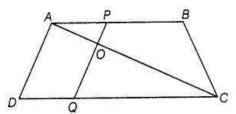
$$\frac{\operatorname{ar}(\Delta POQ)}{\operatorname{ar}(\Delta SOR)} = \frac{(PQ)^2}{(RS)^2} = \left(\frac{PQ}{RS}\right)^2 = \left(\frac{3}{1}\right)^2$$
 [from Eq. (i)]
$$\frac{\operatorname{ar}(\Delta POQ)}{\operatorname{ar}(\Delta SOR)} = \frac{9}{1}$$

Hence, the required ratio is 9:1.

Question 5:

 \Rightarrow

In figure, if AB \parallel DC and AC, PQ intersect each other at the point 0. Prove that OA . CQ = 0C . AP.



Solution:

Given AC and PQ intersect each other at the point O and AB \parallel DC Prove that OA . CQ = 0C . AP.

Proof In A AOP and A COQ.	$\angle AOP = \angle COQ$	(vertically opposite angles)	
	∠ APO = ∠ CQO		
	[since, AB DC and PQ is transversal, so alternate angles]		
	Δ AOP ~ Δ COQ	[by AAA similarity criterion]	
Then,	$\frac{OA}{OC} = \frac{AP}{CQ}$ [sin	nce, corresponding sides are proportional]	
75_24	$OA \cdot CO = OC \cdot AP$	Hence proved.	

Question 6:

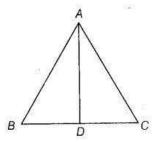
Find the altitude of an equilateral triangle of side 8 cm.

Solution:

Let ABC be an equilateral triangle of side 8 cm i.e., AB = BC = CA = 8 cm. Draw altitude AD which is perpendicular to BC. Then, D is the mid-point of BC.

.:
$$BD = CD = \frac{1}{2}BC = \frac{8}{2} = 4 \text{ cm}$$

Now, $AB^2 = AD^2 + BD^2$ [by Pythagoras theorem]
 $\Rightarrow (8)^2 = AD^2 + (4)^2$
 $\Rightarrow 64 = AD^2 + 16$
 $\Rightarrow AD^2 = 64 - 16 = 48$
 $\Rightarrow AD = \sqrt{48} = 4\sqrt{3} \text{ cm}$.
Hence, altitude of an equilateral triangle is $4\sqrt{3}$ cm.



Question 7:

If \triangle ABC ~ \triangle DEF, AB = 4 cm, DE = 6, EF = 9 cm and FD = 12 cm, then find the perimeter of \triangle ABC.

Solution:

Given AB = 4cm, DE = 6cm and EF = 9cm and FD = 12 cm

Also,
$$\frac{ABC}{ED} = \frac{ADEF}{EF} = \frac{AC}{DF}$$

$$\Rightarrow \frac{4}{6} = \frac{BC}{9} = \frac{AC}{12}$$

On taking first two terms, we get

$$\frac{4}{6} = \frac{BC}{9}$$

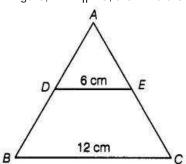
$$\Rightarrow BC = \frac{4 \times 9}{6} = 6 \text{ cm}$$

$$= AC = \frac{6 \times 12}{9} = 8 \text{ cm}$$
Now, perimeter of $\triangle ABC = AB + BC + AC$

$$= 4 + 6 + 8 = 18 \text{ cm}$$

Question 8:

In figure, if DE || BC, then find the ratio of ar (Δ ADE) and ar (DECB).



Solution:

Given, $DE \parallel BC$, DE = 6 cm and BC = 12 cm In $\triangle ABC$ and $\triangle ADE$,

$$\angle ABC = \angle ADE$$
 [corresponding angle]
$$\angle ACB = \angle AED$$
 [corresponding angle] and
$$\angle A = \angle A$$
 [common side]
$$\triangle ABC \sim \triangle AED$$
 [by AAA similarity criterion]
$$\frac{\text{ar } (\triangle ADE)}{\text{ar } (\triangle ABC)} = \frac{(DE)^2}{(BC)^2}$$

$$= \frac{(6)^2}{(12)^2} = \left(\frac{1}{2}\right)^2$$

$$\Rightarrow \frac{\text{ar } (\triangle ADE)}{\text{ar } (\triangle ABC)} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

Let ar $(\triangle ADE) = k$, then ar $(\triangle ABC) = 4k$ Now, ar (DECB) = ar (ABC) - ar (ADE) = 4k - k = 3k \therefore Required ratio = ar (ADE): ar (DECB) = k: 3k = 1: 3

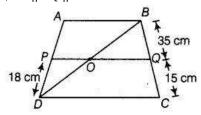
Question 9:

ABCD is a trapezium in which AB \parallel DC and P,Q are points on AD and BC respectively, such that PQ \parallel DC, if PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD.

Solution:

Join BD.

Given, a trapezium ABCD in which AB \parallel DC. P and Q are points on AD and BC, respectively such that PQ \parallel DC. Thus, AB \parallel PQ \parallel DC.



In
$$\triangle$$
 ABD,

By basic proportionality theorem,

$$\frac{DP}{AP} = \frac{DO}{OB}$$
In \triangle BDC,

By basic proportionality theorem,

$$\frac{BQ}{QC} = \frac{OB}{OD}$$

$$\Rightarrow \qquad \frac{QC}{BQ} = \frac{OD}{OB}$$

$$\Rightarrow \qquad \frac{DP}{AP} = \frac{QC}{BQ}$$

$$\Rightarrow \qquad \frac{18}{AP} = \frac{15}{35}$$

$$\Rightarrow \qquad AP = \frac{18 \times 35}{15} = 42$$

$$\therefore \qquad AD = AP + DP = 42 + 18 = 60 \text{ cm}$$
[: $PQ \parallel AB$]

...(i)

Question 10:

Corresponding sides of two similar triangles are in the ratio of 2 : 3. If the area of the smaller triangle is 48 cm², then find the area of the larger triangle.

Solution

Given, ratio of corresponding sides of two similar triangles = 2:3 $o_{\frac{3}{4}}^2$

Area of smaller triangle = 48 cm^2

By the property of area of two similar triangle,

Ratio of area of both riangles = $(Ratio of their corresponding sides)^2$

i.e.,
$$\frac{\text{ar (smaller triangle)}}{\text{ar (larger triangle)}} = \left(\frac{2}{3}\right)^2$$

$$\Rightarrow \frac{48}{\text{ar (larger triangle)}} = \frac{4}{9}$$

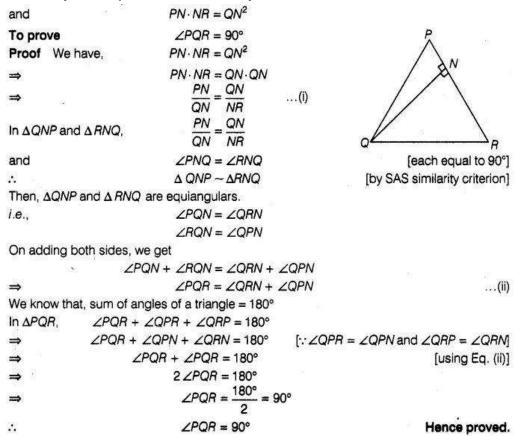
$$\Rightarrow \text{ar (larger triangle)} = \frac{48 \times 9}{4} = 12 \times 9 = 108 \text{ cm}^2$$

Question 11:

In a \triangle PQR, N is a point on PR, such that QN \perp PR. If PN . NR = QN, then prove that \angle PQR = 90°.

Solution:

Given Δ PQR, N is a point on PR, such that QN \perp PR



Question 12:

Areas of two similar triangles are 36 cm² and 100 cm². If the length of a side of the larger triangle is 20 cm. Find the length of the corresponding side of the smaller triangle.

Solution:

Given, area of smaller triangle = 36 cm 2 and area of larger triangle = 100 cm 2 Also, length of a side of the larger triangle = 20 cm

Let length of the corresponding side of the smaller triangle = x cm

By property of area of similar triangle,

$$\frac{\text{ar (larger triangle)}}{\text{ar (smaller triangle)}} = \frac{\text{(Side of larger triangle)}^2}{\text{Side of smaller triangle}^2}$$

$$\Rightarrow \frac{100}{36} = \frac{(20)^2}{x^2} \Rightarrow x^2 = \frac{(20)^2 \times 36}{100}$$

$$\Rightarrow x^2 = \frac{400 \times 36}{100} = 144$$

$$\therefore x = \sqrt{144} = 12 \text{ cm}$$

Hence, the length of corresponding side of the smaller triangle is 12 cm.

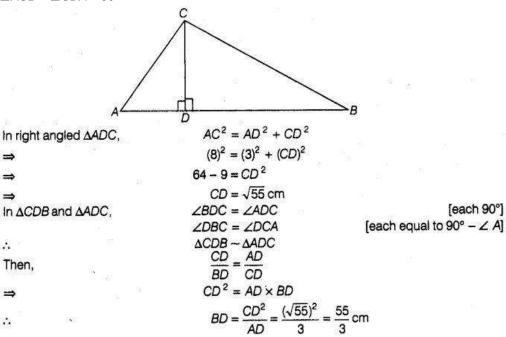
Question 13:

In given figure, if $\angle ACB = \angle CDA$, AC = 8 cm and AD = 3 cm, then find BD.

Solution:

Given, AC = 8 cm, AD = 3cm and
$$\angle$$
ACB = \angle CDA = 90°

∠ACB = ∠CDA = 90°

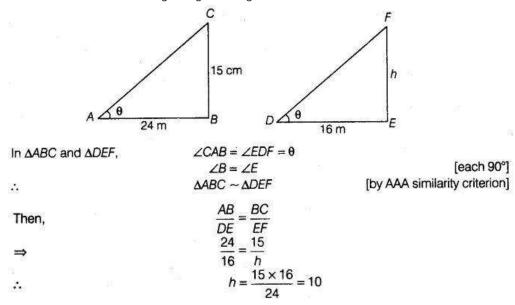


Question 14:

A 15 high tower casts a shadow 24 Long at a certain time and at the same time, a telephone pole casts a shadow 16 long. Find the height of the telephone pole.

Solution:

Let BC = 15 m be the tower and its shadow AB is 24 m. At that time \angle CAB = 8, Again, let EF = h be a telephone pole and its shadow DE = 16 m. At the same time \angle EDF = 8 Here, \triangle ASC and \triangle DEF both are right angled triangles.



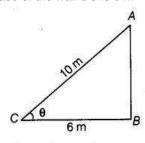
Hence, the height of the telephone pole is 10 m.

Question 15:

Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

Solution:

Let AB be a vertical wall and AC = 10 m is a ladder. The top of the ladder reaches to A and distance of ladder from the base of the wall BC is 6 m.



In right angled
$$\triangle ABC$$
, $AC^2 = AB^2 + BC^2$
 $\Rightarrow \qquad (10)^2 = AB^2 + (6)^2$
 $\Rightarrow \qquad 100 = AB^2 + 36$
 $\Rightarrow \qquad AB^2 = 100 - 36 = 64$
 $\Rightarrow \qquad AB = \sqrt{64} = 8 \text{ cm}$

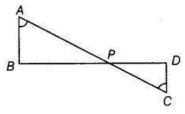
Hence, the height of the point on the wall where the top of the ladder reaches is 8 cm.

Exercise 6.4 Long Answer Type Questions

Question 1:

.

In given figure, if $\angle A = \angle C$, AB = 6 cm, BP = 15 cm, AP = 12 cm and CP = 4 cm, then find the lengths of PD and CD.



Solution:

Given, $\angle A = \angle C$, AS = 6cm, BP = 15cm, AP = 12 cm and CP = 4cm

In $\triangle APB$ and $\triangle CPD$,

 $\angle A = \angle C$

[given]

∠APS = ∠CPD

[vertically opposite angles]

$$\Delta APD \sim \Delta CPD$$

$$\frac{AP}{CP} = \frac{PB}{PD} = \frac{AB}{CD}$$

$$\frac{12}{4} = \frac{15}{PD} = \frac{6}{CD}$$

[by AAA similarity criterion]

[by Pythagoras theorem]

On taking first two terms, we get

$$\frac{12}{4} = \frac{15}{PD}$$
 $PD = \frac{15 \times 4}{12} = 5 \text{ cm}$

On taking first and last term, we get

$$\frac{12}{4} = \frac{6}{CD}$$

$$CD = \frac{6 \times 4}{12} = 2 \text{ cm}$$

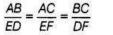
Hence, length of PD = 5 cm and length of CD = 2 cm

Question 2:

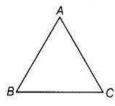
It is given that \triangle ABC \sim \triangle EDF such that AB = 5 cm, AC = 7 cm, DF = 15 cm and DE = 12 cm. Find the lengths of the remaining sides of the triangles,

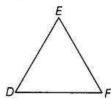
Solution:

Given, $\triangle ABC \sim \triangle EDF$, so the corresponding sides of $\triangle ASC$ and $\triangle EDF$ are in the same ratio.



...(i)





Also,

$$AB = 5 \text{ cm}$$
, $AC = 7 \text{ cm}$
 $DF = 15 \text{ cm}$ and $DE = 12 \text{ cm}$

On putting these values in Eq. (i), we get $\frac{5}{12} = \frac{7}{EF} = \frac{BC}{15}$

$$\frac{5}{12} = \frac{7}{EF} = \frac{BC}{15}$$

On taking first and second terms, we get

$$\frac{5}{12} = \frac{7}{EF}$$

$$EF = \frac{7 \times 12}{5} = 16.8 \, \text{cm}$$

On taking first and third terms, we get $\frac{5}{12}$

$$\frac{5}{12} = \frac{BC}{15}$$
 $BC = \frac{5 \times 15}{12} = 625 \text{ cm}$

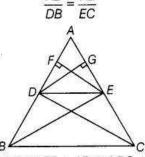
Hence, lengths of the remaining sides of the triangles are EF = 16.8 cm and SC = 625 cm.

Question 3:

Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides, then the two sides are divided in the same ratio.

Let a $\triangle ABC$ in which a line DE parallel to SC intersects AB at D and AC at E.To prove DE divides the two sides in the same ratio.

i.e.,



Construction Join BE, CD and draw $EF \perp AB$ and $DG \perp AC$.

Proof Here,

$$\frac{\text{ar }(\Delta ADE)}{\text{ar }(\Delta BDE)} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF}$$

[: area of triangle = $\frac{1}{2}$ × base × height]

similarly,

$$\frac{\operatorname{ar}\left(\Delta ADE\right)}{\operatorname{ar}\left(\Delta DEC\right)} = \frac{\frac{1}{2} \times AE \times GD}{\frac{1}{2} \times EC \times GD} = \frac{AE}{EC} \qquad ...(ii)$$

Now, since, ΔBDE and ΔDEC lie between the same parallel DE and BC and on the same base DE.

...(iii) $ar(\Delta BDE) = ar(\Delta DEC)$ So,

From Eqs. (i), (ii) and (iii),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

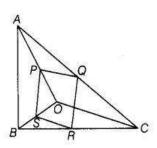
Hence proved.

...(i)

In the given figure, if PQRS is a parallelogram and AB || PS, then prove that 0C || SR.

Solution:

Given PQRS is a parallelogram, so PQ || SR and PS || QR. Also, AB || PS



From Eqs. (i) and (ii),

$$\frac{OS}{OB} = \frac{CR}{CB} \text{ or } \frac{OB}{OS} = \frac{CB}{CR}$$

On subtracting from both sides, we get

$$\frac{OB}{OS} - 1 = \frac{CB}{CR} - 1$$

$$\frac{OB - OS}{OS} = \frac{CB - CR}{CR}$$

$$\Rightarrow \frac{BS}{OS} = \frac{BR}{CR}$$

By converse of basic proportionality theorem,

SR || OC Hence proved.

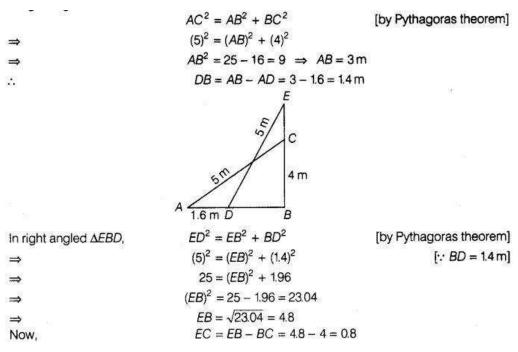
Question 5:

A 5m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

Solution:

Let AC be the ladder of length 5 m and BC = 4 m be the height of the wall, which ladder is placed. If the foot of the ladder is moved 1.6 m towards the wall i.e, AD = 1.6 m, then the ladder is slide upward i.e. ,CE = x m.

In right angled $\triangle ABC$,



Hence, the top of the ladder would slide upwards on the wall at distance 0.8 m.

Question 6:

For going to a city B from city A there is a route via city C such that $AC \perp CB$, AC = 2x km and CB = 2(x+7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

Solution:

Given, AC \perp CB, km, CB = 2(x + 7) km and AB = 26 km

On drawing the figure, we get the right angled Δ ACB right angled at C.

Now, In Δ ACB, by Pythagoras theorem,

$$AB^{2} = AC^{2} + BC^{2}$$
⇒ $(26)^{2} = (2x)^{2} + \{2(x+7)\}^{2}$
⇒ $676 = 4x^{2} + 4(x^{2} + 49 + 14x)$
⇒ $676 = 8x^{2} + 56x + 196$
⇒ $8x^{2} + 56x - 480 = 0$
On dividing by 8, we get $x^{2} + 7x - 60 = 0$
⇒ $x(x+12) - 5(x+12) = 0$
∴ $x = -12, x = 5$

Since, distance cannot be negative.

$$x = 5$$
Now,
$$AC = 2x = 10 \text{ km}$$
and
$$BC = 2(x + 7) = 2(5 + 7) = 24 \text{ km}$$
The distance covered to reach city B from city A via city C
$$= AC + BC$$

$$= 10 + 24$$

$$= 34 \text{ km}$$

Distance covered to reach city B from city A after the construction of the highway $= BA = 26 \,\mathrm{km}$

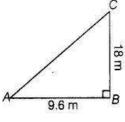
Hence, the required saved distance is 34 - 26 i.e., 8 km.

Question 7:

A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

Solution:

Let BC = 18 m be the flag pole and its shadow be AB = 9.6 m. The distance of the top of the pole, C from the far end i.e., A of the shadow is AC.



In right angled
$$\triangle ABC$$
, $AC^2 = AB^2 + BC^2$ [by Pythagoras theorem]

$$\Rightarrow AC^2 = (9.6)^2 + (18)^2$$

$$AC^2 = 92.16 + 324$$

$$\Rightarrow AC^2 = 416.16$$

$$\therefore AC = \sqrt{416.16} = 20.4 \text{m}$$

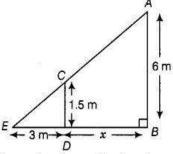
Hence, the required distance is 20.4 m.

Question 8:

A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m casts a shadow of 3 m, then find how far she is away from the base of the pole.

Solution:

Let A be the position of the street bulb fixed on a pole AB = 6 m and CD = 1.5 m be the height of a woman and her shadow be ED = 3 m. Let distance between pole and woman be x m.



Here, woman and pole both are standing vertically.

So,
$$CD \parallel AB$$

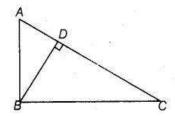
In $\triangle CDE$ and $\triangle ABE$, $\angle E = \angle E$
 $\angle ABE = \angle CDE$
 \therefore $\triangle CDE \sim \triangle ABE$
Then, $\frac{ED}{EB} = \frac{CD}{AB}$
 \Rightarrow $\frac{3}{3+x} = \frac{1.5}{6}$
 \Rightarrow $3 \times 6 = 1.5(3+x)$
 \Rightarrow $1.5x = 18 - 4.5$
 \therefore $x = \frac{13.5}{1.5} = 9 \text{ m}$

[common angle] [each equal to 90°] [by AAA similarity criterion]

Hence, she is at the distance of 9 m from the base of the pole.

Question 9:

In given figure, ABC is a triangle right angled at B and BD \perp AC. If AD = 4 cm and CD = 5 cm, then find BD and AB.



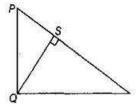
Solution:

```
Given, \triangle ABC in which \angle B = 90^{\circ} and BD \perp AC
                                    AD = 4 \text{ cm} and CD = 5 \text{ cm}
                                                                                         [each equal to 90°]
In AADB and ACDB,
                                \angle ADB = \angle CDB
                                                                                 [each equal to 90° - ∠C]
                                \angle BAD = \angle DBC
and
                                ΔDBA ~ ΔDCB
                                                                               [by AAA similarity criterion]
:.
                                   DB _ DC
Then,
                                   DA
                                          DB
                                  DB^2 = DA \times DC
                                  DB^2 = 4 \times 5
                                   DB = 2\sqrt{5} cm
                                  BC^2 = BD^2 + CD^2
                                                                                  [by Pythagoras theorem]
In right angled ΔBDC,
                                  BC^2 = (2\sqrt{5})^2 + (5)^2
                                        =20 + 25 = 45
                                   BC = \sqrt{45} = 3\sqrt{5}
                                \Delta DBA \sim \Delta DCB,
Again,
                                   DB BA
٠.
                                   DC BC
                                 2\sqrt{5} = BA
                                           3√5
                                    BA = \frac{2\sqrt{5} \times 3\sqrt{5}}{5} = 6 \, \text{cm}
:.
```

Hence, $BD = 2\sqrt{5}$ cm and AB = 6 cm

Question 10:

In given figure PQR is a right triangle, right angled at Q and QS \perp PR. If PQ = 6 cm and PS = 4 cm, then find QS, RS and QR.



Solution:

Given, $\triangle PQR$ in which $\angle Q = 90^{\circ}$, QS \perp PR and PQ = 6 cm, PS = 4 cm In $\triangle SQP$ and $\triangle SRQ$,

 $PQ^2 = PS^2 + QS^2$ [by Pythagoras theorem] In right angled ΔPSQ , $(6)^2 = (4)^2 + QS^2$ \Rightarrow $36 = 16 + QS^2$ \Rightarrow $QS^2 = 36 - 16 = 20$ \Rightarrow $QS = \sqrt{20} = 2\sqrt{5} \text{ cm}$.. On putting the value of QS in Eq. (i), we get $(2\sqrt{5})^2 = 4 \times SR$ $SR = \frac{4 \times 5}{4} = 5 \text{ cm}$ \Rightarrow $QR^2 = QS^2 + SR^2$ In right angled ΔQSR, $QR^2 = (2\sqrt{5})^2 + (5)^2$ \Rightarrow $QR^2 = 20 + 25$ \Rightarrow $QR = \sqrt{45} = 3\sqrt{5} \text{ cm}$

Question 11:

In $\triangle PQR$, $PD \perp QR$ such that D lies on QR, if PQ = a, PR = b, QD = c and DR = d, then prove that (a + b)(a - b) = (c + d) (c - d).

Solution:

Given In A PQR, PD 1 QR, PQ = a, PR = b,QD = c and DR =d

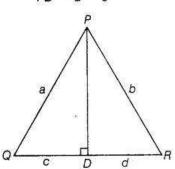
Hence, QS = $2\sqrt{5}$ cm, RS = 5 cm and QR = $3\sqrt{5}$ cm

To prove (a + b) (a-b) = (c + d)(c-d)

Proof In right angled ΔPDQ,

 $PQ^2 = PD^2 + QD^2$ $a^2 = PD^2 + c^2$

 $PD^2 = a^2 - c^2$...(i)



In right angled $\triangle PDR$,

 $PR^2 = PD^2 + DR^2$

 $b^2 = PD^2 + d^2$

[by Pythagoras theorem]

[by Pythagoras theorem]

 \Rightarrow =

 \Rightarrow

 $PD^2 = b^2 - d^2$

From Eqs. (i) and (ii),

 $a^2 - c^2 = b^2 - d^2$ $a^2 - b^2 = c^2 - d^2$

(a - b)(a + b) = (c - d)(c + d)

Hence proved.

Question 12:

In a quadrilateral $\triangle BCD$, $\angle A+ \angle D = 90^{\circ}$. Prove that $AC^2 + BD^2 = AD^2 + BC^2$.

Solution:

Given Quadrilateral $\triangle BCD$, in which $\angle A + \angle D = 90^{\circ}$

 $AC^2 + BD^2 = AD^2 + BC^2$

Construct Produce AB and CD to meet at E.

Also, join AC and BD. Proof In ΔAED,

 $\angle A + \angle D = 90^{\circ}$

[given]

 $\angle E = 180^{\circ} - (\angle A + \angle D) = 90^{\circ}$

[: sum of angles of a triangle = 180°]

Then, by Pythagoras theorem,

 $AD^2 = AE^2 + DE^2$ In $\triangle BEC$, by Pythagoras theorem, $BC^2 = BE^2 + EF^2$

On adding both equations, we get

$$AD^2 + BC^2 = AE^2 + DE^2 + BE^2 + CE^2$$

In AAEC, by Pythagoras theorem,

$$AC^2 = AE^2 + CE^2$$

and in ABED, by Pythagoras theorem,

$$BD^2 = BE^2 + DE^2$$

On adding both equations, we get

$$AC^2 + BD^2 = AE^2 + CE^2 + BE^2 + DE^2$$
 ...(ii)

From Eqs. (i) and (ii),

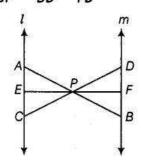
$$AC^2 + BD^2 = AD^2 + BC^2$$

Hence proved.

...(i)

Question 13:

In given figure, $l \mid m$ and line segments AB, CD and EF are concurrent at point P. Prove that $\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$



Solution:

Then,

• • Then,

Given 1 | m and line segments AB, CD and EF are concurrent at point P.

To prove

 $\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$ BD **Proof** In $\triangle APC$ and $\triangle BPD$, ZAPC = ZBPD

ZPAC = ZPBD

ΔAPC ~ ΔBPD

 $\frac{AP}{PB} = \frac{AC}{BD} =$

[vertically opposite angles]

[alternate angles] [by AAA similarity criterion]

In AAPE and ABPF,

 $\angle APE = \angle BPF$ ZPAE = ZPBF

[vertically opposite angles] [alternate angles]

[by AAA similarity criterion]

In $\triangle PEC$ and $\triangle PFD$,

 $\frac{\Delta APE \sim \Delta BPF}{\frac{AP}{PB} = \frac{AE}{BF} = \frac{PE}{PF}}$ $\angle EPC = \angle FPD$

[vertically opposite angles]

 $\angle PCE = \angle PDF$ ΔPEC ~ ΔPFD

[alternate angles]

Then,

..

 $\frac{PE}{PF} = \frac{PC}{PD} = \frac{EC}{FD}$

[by AAA similarity criterion]. · ...(iii)

From Eqs. (i), (ii) and (iii),

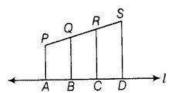
$$\frac{AP}{PB} = \frac{AC}{BD} = \frac{AE}{BF} = \frac{PE}{PF} = \frac{EC}{FD}$$

$$\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$$

Hence proved.

Question 14:

12 cm and SP = 36 cm. Find PQ, QR and RS.



Solution:

Given, AS = 6 cm, BC = 9 cm, CD = 12 cm and SP = 36 cm Also, PA, QB, RC and SD are all perpendiculars to line I. PA \parallel QS \parallel SC \parallel SD

By basic proportionality theorem,

PQ: QR: RS = AB: BC: CD
= 6: 9: 12
PQ = 6x, QR = 9x and RS = 12x
Since, length of
PS = 36 km
PQ + QR + RS = 36

$$\Rightarrow$$
 6x + 9x + 12x = 36
 \Rightarrow 27x = 36
 \Rightarrow 27x = 36
 \Rightarrow $x = \frac{36}{27} = \frac{4}{3}$
Now,
PQ = 6x = 6 × $\frac{4}{3}$ = 8 cm
QR = 9x = 9 × $\frac{4}{3}$ = 12 cm
and

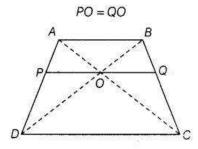
Question 15:

0 is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB \parallel DC. Through 0, a line segment PQ is drawn parallel to AB meeting AD in P and BC in Q, prove that PO = QO.

Solution:

Given ABCD is a trapezium. Diagonals AC and BD are intersect at 0. PQ||AB||DC.

To prove



Proof In $\triangle ABD$ and $\triangle POD$,	PO AB	[∵PQ AB]
	ZD = ZD	[common angle]
	$\angle ABD = \angle POD$	[corresponding angles]
	$\triangle ABD \sim \triangle POD$	[by AAA similarity criterion]
Then,	$\frac{OP}{AB} = \frac{PD}{AD}$	(1)
In ΔABC and ΔOQC,	OQ AB	[∵OQ AB]
	$\angle C = \angle C$	[common angle]
	$\angle BAC = \angle QOC$	[corresponding angle]
, J. S	$\triangle ABC \sim \triangle OQC$	[by AAA similarity criterion]
Then,	$\frac{OQ}{AB} = \frac{QC}{BC}$	(ii)

\$ 150 miles 150	AP OA	[by basic proportionality theorem](iii)
085.75 U	PP OC	[-,,,,,
In ΔABC,	OQ AB	
	$\frac{BQ}{QQ} = \frac{QQ}{QQQ}$	[by basic proportionality theorem](iv)
	QC OC	
From Eqs. (iii) and (iv),	40 00	
	$\frac{AP}{AP} = \frac{BQ}{AP}$	*
	PD QC	
Adding 1 on both sides, we ge	e t	
	$\frac{AP}{A} + 1 = \frac{BQ}{A} + 1$	9
	PD QC	
	AP + PD = BQ + QC	Y
,∂ ,	PD QC	-
_	AD _ BC	
le la	PD QC	
W 70.	PD QC	
7	$\overline{AD} = \overline{BC}$	14版
	OP OQ	[f [(f) (f)]
	$\overline{AB} = \overline{BC}$	[from Eqs. (i) and (ii)]
A	OP OQ	**************************************
. 	${AB} = {AB}$	[from Eq. (ii)]
` ⇒	OP = OQ	Hence proved.

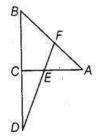
OP || DC

Question 16:

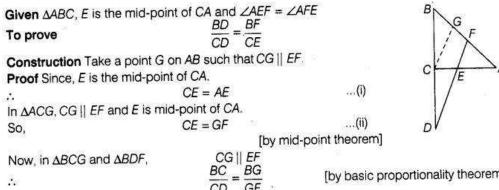
Now, in $\triangle ADC$,

In figure, line segment DF intersects the side AC of a Δ ABC at the point E such that E is the mid-point of CA and

 $\angle AEF = \angle AFE$. Prove that $\frac{BD}{CD} = \frac{BF}{CF}$.



Solution:



Now, in
$$\triangle BCG$$
 and $\triangle BDF$,
$$\frac{BC}{CD} = \frac{BG}{GF}$$
 [by basic proportionality theorem]
$$\Rightarrow \frac{BC}{CD} = \frac{BF - GF}{GF} \Rightarrow \frac{BC}{CD} = \frac{BF}{GF} - 1$$

$$\Rightarrow \frac{BC}{CD} + 1 = \frac{BF}{CE}$$
 [from Eq. (ii)]
$$\Rightarrow \frac{BC + CD}{CD} = \frac{BF}{CE} \Rightarrow \frac{BD}{CD} = \frac{BF}{CE}$$
 Hence proved.

Question 17:

Prove that the area of the semi-circle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semi-circles drawn on the other two sides of the triangle. **Solution:**

Let ABC be a right triangle, right angled at B and AB = y, BC = x.

Three semi-circles are drawn on the sides AB, BC and AC, respectively with diameters AB, BC and AC, respectively.

Again, let area of circles with diameters AB, BC and AC are respectively A₁, A₂ and A₃.

To prove $A_3 = A_1 + A_2$

 \Rightarrow

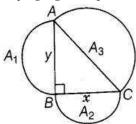
Proof In ΔABC, by Pythagoras theorem,

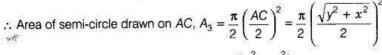
$$AC^2 = AB^2 + BC^2$$

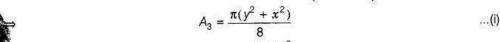
$$\Rightarrow \qquad \qquad AC^2 = y^2 + x^2$$

$$AC = \sqrt{y^2 + x^2}$$

We know that, area of a semi-circle with radius, $r = \frac{\pi r^2}{2}$







Now, area of semi-circle drawn on AB, $A_1 = \frac{\pi}{2} \left(\frac{AB}{2} \right)^2$

$$A_1 = \frac{\pi}{2} \left(\frac{y}{2} \right)^2 \quad \Rightarrow \quad A_1 = \frac{\pi y^2}{8} \qquad \dots (ii)$$

and area of semi-circle drawn on BC, $A_2 = \frac{\pi}{2} \left(\frac{BC}{2}\right)^2 = \frac{\pi}{2} \left(\frac{x}{2}\right)^2$

$$\Rightarrow A_2 = \frac{\pi x^2}{8}$$

On adding Eqs. (ii) and (iii), we get $A_1 + A_2 = \frac{\pi y^2}{8} + \frac{\pi x^2}{8}$

$$= \frac{\pi (y^2 + x^2)}{8} = A_3$$
 [from Eq. (i)]

 $A_1 + A_2 = A_2$

Hence proved.

Question 18:

 \Rightarrow

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangle drawn on the other two sides of the triangle.

Solution:

Let a right triangle BAC in which $\angle A$ is right angle and AC = y, AB = x.

Three equilateral triangles \triangle AEC, \triangle AFB and \triangle CBD are drawn on the three sides of \triangle ABC. Again let area of triangles made on AC, AS and BC are A₁, A₂ and A₃, respectively.

To prove $A_3 = A_1 + A_2$

Proof In ACAB, by Pythagoras theorem,

$$BC^2 = AC^2 + AB^2$$

$$\Rightarrow BC^2 = y^2 + x^2$$

$$BC = \sqrt{y^2 + x^2}$$

We know that, area of an equilateral triangle = $\frac{\sqrt{3}}{4}$ (Side)²

∴ Area of equilateral $\triangle AEC$, $A_1 = \frac{\sqrt{3}}{4} (AC)^2$

$$\Rightarrow A_1 = \frac{\sqrt{3}}{4}y^2$$

and area of equilateral
$$\triangle AFB$$
, $A_2 = \frac{\sqrt{3}}{4}(AB)^2 = \frac{\sqrt{3}}{4}\sqrt{(y^2+x^2)}$

$$= \frac{\sqrt{3}}{4}(y^2+x^2) = \frac{\sqrt{3}}{4}y^2 + \frac{\sqrt{3}}{4}x^2$$

$$= A_1 + A_2$$

[from Eqs. (i) and (ii)]
Hence proved.

....(i)

