EXERCISE 6.2

1. Evaluate (i) 8! (ii) 4!-3!

Solution:

Using the definition of factorial, (i) $8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40,320$

(ii)
$$4! - 3! = 4 \times 3 \times 2 \times 1 - 3 \times 2 \times 1 = 24 - 6 = 18$$

2. Is 3! + 4! = 7!?

Solution:

Using the definition of factorial, $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040$ $4! = 4 \times 3 \times 2 \times 1 = 24$ $3! = 3 \times 2 \times 1 = 6$

Now, 3! + 4! = 6 + 24 = 30

Therefore, $3! + 4! \neq 7!$

3. Compute 8! / (6!×2!)

Solution:

Using the definition of factorial, 8! can be written ad $8 \times 7 \times 6$!. Thus,

 $8!/(6! \times 2!)$ = $(8 \times 7 \times 6!) / (6! \times 2!)$ = $(8 \times 7) / (2 \times 1)$ = 4×7 = 28

4. If 1/6! + 1/7! = x/8!, find x

Solution:

It is given that 1/6! + 1/7! = x/8!

Using the definition of factorial, $1/6! + 1/(7 \times 6!) = x/(8 \times 7 \times 6!)$ Multiplying both sides by 6!,

theboardstudy.com

$$1 + 1/7 = x/(8 \times 7)$$

 $8/7 = x/(8 \times 7)$
So, $x = 64$

5. Evaluate
$$n!/(n-r)!$$
, when (i) $n = 6$, $r = 2$ (ii) $n = 9$, $r = 5$

Solution:

Using the definition of factorial, $n! = n (n - 1) (n - 2) \dots 3 \cdot 2 \cdot 1$

We will use this in each of the given problems.

(i)
$$n = 6$$
, $r = 2$
 $6!/(6 - 2)! = 6!/(4)! = 6 \times 5 \times 4!/(4!) = 6 \times 5 = 30$

(ii)
$$n = 9$$
, $r = 5$
 $9!/(9 - 5)! = 9!/(4)! = 9 \times 8 \times 7 \times 6 \times 5 \times 4!/(4!) = 9 \times 8 \times 7 \times 6 \times 5 = 15,120$

6.